Business

October 6, 2017
 

Airbus’ ‘BLADE’ laminar flow wing demonstrator makes first flight

The Airbus A340 Flight Lab’s first takeoff equipped with outer wing sections designed for highly smooth airflow over their surfaces. Known as natural laminar flow, such smoothed passage of air creates less drag than the airflow on traditional wings, potentially reducing fuel burn.

Airbus’ A340 laminar-flow “BLADE” test demonstrator aircraft (A340-300 MSN001) made its successful maiden flight for the EU-sponsored Clean Sky “Blade” project Sept. 26.

The aircraft, dubbed “Flight Lab”, took off from the Tarbes aerodrome in southern France at 11 a.m., local time, and after a series of successful tests it landed at Airbus’ facilities in Toulouse Blagnac. The overall flight time was 3hrs/38mins.

The BLADE project – which stands for “Breakthrough Laminar Aircraft Demonstrator in Europe” — is tasked with assessing the feasibility of introducing the technology for commercial aviation. It aims to improve aviation’s ecological footprint, bringing with it a 50% reduction of wing friction and up to five percent lower CO2 emission. Airbus’ A340 Flight Lab is the first test aircraft in the world to combine a transonic laminar wing profile with a true internal primary structure.

On the outside the aircraft is fitted with two representative transonic laminar outer-wings, while inside the cabin a highly complex specialist flight-test-instrumentation station has been installed. The extensive modifications to the A340-300 test-bed aircraft took place during the course of a 16-month working party in Tarbes, with the support of numerous industrial partners across Europe. Today’s first-flight marks the kick-off of the Blade flight-test campaign to explore the wing’s characteristics in flight.

BLADE is organized through Europe’s Clean Sky aeronautical research program. The BLADE program involves 21 European partners with 500 contributor, including GKN Aerospace: designer of the starboard laminar flow wing panel; and Saab, designer of the port wing segment.

“We began by opening the flight envelope to check that the aircraft was handling correctly,” explains Airbus Flight-Test Engineer, Philippe Seve, who was on board the flight. “We achieved our objective to fly at the design Mach number, at a reasonable altitude and check everything was fine. We also checked that the FTI was working as expected, to identify further fine-tuning for the next flights.”

In the run-up to the start of this flight-testing phase, a small team of 10 specially trained pilots, test engineers and flight test engineers had prepared for this milestone for several months, spending time in a simulator and familiarizing themselves with the FTI systems to be installed on the Airbus flight-test aircraft. Moreover, on equipment installation side, a working party of 70 people performed the FTI installation inside the aircraft, while teams from Bremen, Germany and Broughton, UK worked externally on the outer wings, with a team from Stade Germany, installing a pod containing infrared cameras on the fin.

On the wings, there are hundreds of points to measure the waviness of the surface to help Airbus’ engineers ascertain its influence on the laminarity – which is the first time that Airbus has used such a testing method on an aircraft. Other ‘firsts’ are the use of infrared cameras inside the pod to measure wing temperature and the acoustic generator which measures the influence of acoustics on laminarity. In addition, there is also an innovative reflectometry system, which measures overall deformation in real-time during flight.

A key goal of Blade is to be able to measure the tolerances and imperfections which can be present and still sustain laminarity. To this end, Airbus will simulate every type of imperfection in a controlled manner, so that at the end of the campaign the tolerances for building a laminar wing will be fully known. The flight Lab will perform around 150 flight hours in the coming months.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines – September 17, 2018

News T-6 hypoxia problem solved, Air Force announces – The rash of hypoxia-like problems in the Air Force’s fleet of T-6 Texan II trainers was primarily caused by fluctuating concentrations of oxygen in the cockpit, the service said Sept. 13.   Military death benefits won’t be stopped by government shutdowns anymore – Military death gratuities...
 
 

News Briefs – September 17, 2018

Putin inspects war games billed as Russia’s biggest-ever Russian President Vladimir Putin inspected a week-long military exercise in eastern Siberia that involves around 300,000 troops and is being billed as Russia’s biggest-ever. Speaking at a firing range in the Chita region Sept. 13, Putin lauded the troops for their “high-level” performance and insisted the war...
 
 
Air Force photograph by Staff Sgt. Danielle Quilla

B-2s conduct hot-pit refueling at Wake Island

Air Force photograph by Staff Sgt. Danielle Quilla Crew chiefs and a fuel distribution operator deployed from Whiteman Air Force Base, Mo., conduct hot-pit refueling on a B-2 Spirit at Wake Island Airfield Sept. 14, 2018. Hot-p...