Space & Technology

January 19, 2018
 

Kilopower: What’s next?

nasa-kilopower
When astronauts someday venture to the Moon, Mars and other destinations, one of the first and most important resources they will need is power.

A reliable and efficient power system will be essential for day-to-day necessities, such as lighting, water and oxygen, and for mission objectives, like running experiments and producing fuel for the long journey home.

That’s why NASA is conducting experiments on Kilopower, a new power source that could provide safe, efficient and plentiful energy for future robotic and human space exploration missions.

This pioneering space fission power system could provide up to 10 kilowatts of electrical power — enough to run two average households — continuously for at least ten years. Four Kilopower units would provide enough power to establish an outpost.

About the experiment
The prototype power system was designed and developed by NASA’s Glenn Research Center in collaboration with NASA’s Marshall Space Flight Center and the Los Alamos National Laboratory, while the reactor core was provided by the Y12 National Security Complex. NASA Glenn shipped the prototype power system from Cleveland to the Nevada National Security Site (NNSS) in late September.

The team at the NNSS recently began tests on the reactor core. According to NASA Glenn’s Marc Gibson, the Kilopower lead engineer, the team will connect the power system to the core and begin end-to-end checkouts this month. Gibson says the experiments should conclude with a full-power test lasting approximately 28 hours in late March.

The kilopower advantage
Fission power can provide abundant energy anywhere we want humans or robots to go. On Mars, the sun’s power varies widely throughout the seasons, and periodic dust storms can last for months. On the Moon, the cold lunar night lingers for 14 days.

“We want a power source that can handle extreme environments,” says Lee Mason, NASA’s principal technologist for power and energy storage. “Kilopower opens up the full surface of Mars, including the northern latitudes where water may reside. On the Moon, Kilopower could be deployed to help search for resources in permanently shadowed craters.”

In these challenging environments, power generation from sunlight is difficult and fuel supply is limited. Kilopower is lightweight, reliable and efficient, which makes it just right for the job.




All of this week's top headlines to your email every Friday.


 
 

 

NASA team investigates ultrafast laser machining for multiple spaceflight applications

(Photo Credit: Bill Hrybyk/NASA) Steve Li (left), Frankie Micalizzi (middle), and Robert Lafon (right) are using an ultrafast laser to bond dissimilar materials and etch microscopic channels or waveguides through which light could travel in photonic integrated circuits and laser transmitters. An ultrafast laser that fires pulses of light just 100 millionths of a nanosecond...
 
 
NASA photograph

NASA looking to tiny technology for big payoffs

NASA photograph NASA works with industry partner Nanocomp Technologies Inc. of Merrimack, New Hampshire, to advance manufacturing of carbon nanotube composite materials. On Oct. 29, NASA visited Nanocomp’s facility to discuss...
 
 
nasa-moon

NASA calls for instruments, technologies for delivery to moon

NASA has announced a call for Lunar Surface Instrument and Technology Payloads that will fly to the Moon on commercial lunar landers as early as next year or 2020. The agency is working with U.S. industry and international part...