NASA

November 2, 2012

NASA Dryden F/A-18 to be chasing ‘FaINT’ sonic booms

NASA’s F/A-18B mission support aircraft 852 is pictured flying over the high desert near the Tehachapi Mountains northwest of Mojave, Calif. The aircraft will be flying a series of low-supersonic, high-altitude flight profiles during the Farfield Investigation of No Boom Threshold, or FaINT, flight research project at NASA Dryden.

NASA’s Supersonics Project will embark on its latest effort to soften sonic booms when a NASA F/A-18 aircraft takes to the air in a project called Farfield Investigation of No Boom Threshold, or FaINT, beginning in late October.

As the latest in a continuing progression of NASA supersonics research projects aimed at reducing or mitigating the effect of sonic booms, FaINT is designed to enable engineers to better understand evanescent waves, an acoustic phenomenon that occurs at the very edges or just outside of the normal sonic boom envelope.

For an aircraft flying at a supersonic speed of about Mach 1.2 or less at an altitude above 35,000 feet, the shockwaves being produced typically do not reach the ground, so no sonic boom is heard. This is because shockwaves from an aircraft flying supersonically at higher altitudes are refracted, or bent upwards, as they enter warmer air closer to the ground, due to the fact that the speed of sound increases with air temperature.

But when sonic booms curve upward they create a series of sonic boom waves that are focused along a line. This line is called a caustic line. The side of the caustic line opposite of the sonic boom waves is called the “shadow side,” where the evanescent waves are generated. This is the area that NASA researchers will study during FaINT.

“It’s exciting to help lead a new area in sonic boom flight research,” said Larry Cliatt, principal investigator for the FaINT flight project at NASA’s Dryden Flight Research Center. “We are investigating supersonic technology and research that is relatively raw in the modern sense. When overland supersonic commercial travel is commonplace, it will be efforts like this that helped get us there.”

The planned evanescent wave flights will occur over Edwards Air Force Base, Calif., where special microphone arrays placed on the southern portion of Rogers Dry Lake will again be the NASA Dryden researcher’s sensor of choice.

For the upcoming FaINT flight project, capturing the fleeting sounds of evanescent waves coming off sonic boom shockwaves will be a challenge. Similar to the shadow the sun creates behind a building, if some light were to still leak around the edges it would not get completely dark, but it would get darker the further you move away from the edge. Certain conditions and refractions create a similar “shadow side” of a sonic boom where evanescent waves are generated, sounding similar to distant thunder. These waves quickly fade and disappear, as supersonic shockwaves act similar to boat wakes on water, decreasing with distance.

“The FaINT team has been working hard on the development and design of the FaINT project for the last six months,” said Brett Pauer, FaINT deputy project manager at NASA Dryden. “NASA, along with our seven industry and university partners, are ready to collect data and expand our collective knowledge of sonic boom propagation effects near the shadow side of them,” Pauer said.
Characterizing the effects of both normal and loud sonic booms in order to provide the data necessary for engineers to design future low-boom supersonic aircraft has required an amazing amount of work and tenacity by NASA engineers from the agency’s Dryden and Langley research centers, and industry partners as well.

Related sonic boom research projects preceding FaINT date back several years. Recent efforts include the Superboom Caustic Analysis and Measurement Program, which produced and measured amped-up, super-loud sonic booms, and the Waveforms and Sonic boom Perception and Response project, which gathered data from a select group of volunteer Edwards Air Force Base residents on their individual perceptions of sonic booms produced by aircraft in supersonic flight over Edwards.

The overarching goal of NASA’s sonic boom reduction research is to shrink the sonic boom “footprint” in order to make commercial supersonic flight over land practical.

This research is funded by NASA’s Aeronautics Research Mission Directorate at NASA Headquarters in Washington, D.C.




All of this week's top headlines to your email every Friday.


 
 

 

NASA seeks suborbital flight services proposals for technology demonstrations

NASA is seeking proposals from U.S. commercial suborbital reusable launch vehicle providers to integrate and fly technology payloads for the space agency. NASA uses companies for suborbital flights to encourage and facilitate the growth of this important aerospace market while also providing a means to advance a wide range of new launch vehicle and space...
 
 
Air Force photograph by Rebecca Amber

‘Operation Play and Sleigh’ a success

Air Force photograph by Rebecca Amber The 412th Security Forces Squadron Training Section held a Ruck March and Toy Drive Dec. 20 for children at the A. Miriam Jamison Childrenís Center in Kern County, Calif. Participants carr...
 
 
NASA photograph

NASA Dryden celebrates 60th anniversary of first Mach 2 flight

NASA photograph One of the three Douglas Skyrockets rockets upward during a research flight. Sixty years ago, A. Scott Crossfield, a talented young engineering research pilot for the National Advisory Committee for Aeronautics,...
 

 
NASA photograph by Jim Ross

NASA tests SLS autopilot technology on F/A-18 Jet

NASA photograph by Jim Ross An F/A-18 research jet simulated various flight conditions that NASA’s Space Launch System may experience as it makes its way from the launch pad to space, to evaluate the rocket’s flight...
 
 

NASA Dryden awards facilities maintenance contract to Helix Management Services

NASA’s Dryden Flight Research Center, Edwards, Calif., has awarded a contract to Helix Management Services, of Lanham, Md., to provide facility operations and maintenance services at the center’s campuses at Edwards Air Force Base and Palmdale, Calif. The firm fixed-price contract could be worth as much as $29.4 million over the five-year life of the...
 
 
NASA photograph by Tom Tschida

NASA Dryden’s DROID mini-UAV reaches new heights

NASA photograph by Tom Tschida The DROID 3 takes off from the Muroc Model Masters strip on Rosamond Dry Lake on its first attempt to reach 10,000-foot altitude.   The smallest member of NASA Dryden Flight Research Center&#...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>