NASA

March 22, 2013

Jetsons Redux: Developing future aircraft control systems

The quad-rotor model helicopter is flying to validate research on elements of a futuristic control system that has immediate applications for unmanned aircraft systems and potentially to a future personal air vehicle.

When George Jetson was ready to head off to the office he hopped into his bubble-shaped aerocar and zoomed off to work.

Traffic was manageable without cumbersome signals. In addition, he didn’t have to worry about parking because his personal air vehicle conveniently converted into a briefcase.

While the realities of the concepts from the 1960s cartoon have not yet come to pass, two researchers at NASA’s Dryden Flight Research Center are working on technology that could one day make such a vehicle possible. Fitting them in your suitcase? Well, that’s still a ways off.

Using an off-the-shelf, quad-rotor, remotely piloted model helicopter with its own piloting system, Matt Redifer and Loyd Hook can do the math to develop algorithms needed for future control systems. They envision these systems being able to safely and reliably operate a personal air vehicle and make many of those solutions part of the standard hardware for easier certification.

For example, programming the vehicle to avoid accidents with other air traffic is a must. The duo said they also believe such a vehicle would need to have a number of autonomously controlled piloting functions to win certification from the Federal Aviation Administration for this futuristic transportation.

Although designed to enhance safety and reliability for an eventual personal air vehicle, the technology also has broad applications for traditional manned and unmanned aircraft. For example, aircraft required to fly near dense urban or residential areas for work such as delivering packages, law enforcement, or disaster preparation and response could benefit as the FAA continues to look at solutions to best integrate manned and unmanned systems in the National Airspace System.

In addition, some uses could be out of this world – a future Mars flying vehicle could use the systems technologies Redifer and Hook are developing.

To begin their research, Redifer and Hook purchased the quad-rotor model aircraft and augmented the autopilot system as part of a NASA Dryden Center Innovation Fund grant. Eventually the system for the quad-rotor aircraft could incorporate global positioning satellite information, map and typographical information. For now, three cameras provide location information to navigate the aircraft.

The idea for the project came from a conversation Hook had with Mark Skoog, NASA’s project manager for several automatic ground collision avoidance system, or GCAS, projects. Skoog thought that the system developed for a military F-16 fighter plane and flown in a simpler form on the Dryden Remotely Operated Integrated Drone, or DROID, could be modified to work with a personal air vehicle. The concept was to make it possible to fly the vehicle in an autonomous mode, like an aircraft, but make it as easy to drive as a car, Hook explained.

FAA certification requirements for analytical systems that learn and predict situations would be complicated. For that reason Hook and Redifer chose a multi-layered system approach, Hook said. A standard flight control system is the first layer with safety critical systems constituting a middle layer that also has a GCAS with the authority to tell the higher level “thinking” systems that it can’t perform certain maneuvers. For example, “The GCAS would tell the computer it can’t fly into the ground,” Hook said.

Redifer is interested in the control challenges of the system. The quad-rotor vehicle can validate and verify that the new subsystems work and lay the foundation for the higher level analytical “thinking” for the system.

“Moving the GCAS algorithms to hardware will increase the reliability that will be essential for a future personal air vehicle,” Redifer added.

Project goals include demonstration of the multi-level autonomous piloting system.

“We want to have all the systems you would need,” Hook said, “and demonstrate the multi-layer approach that will apply to unmanned aircraft systems in the short term and one day to a personal air vehicle. Such a future vehicle also will have health monitoring systems to indicate if there are troubles prior to takeoff, its destination and where it will land if an emergency develops.”

A personal air vehicle is still a futuristic concept. However, the technology to make way for that possibility while making current aircraft systems safer and more reliable is underway today at NASA Dryden.




All of this week's top headlines to your email every Friday.


 
 

 
earthquake

Don’t let some recent shaking get you rattled

Background image from California Institute of Technology’s Southern California Earthquake Data Center Earthquakes are nothing new to residents in SoCal, but the recommended safety measures can be. Like most of California,...
 
 

News Briefs April 11, 2014

31st TES fundraiser The 31st Test and Evaluation Squadron Booster Club will hold a car wash fundraiser at the Bowling Center 9 a.m.-4:30 p.m., April 18. Get your car clean and help support the 31st TES. Volunteer appreciation Brig. Gen. Michael T. Brewer, 412th Test Wing commander, cordially invites you to attend the Edwards Air...
 
 

AFPC has expanded voluntary FM program waiver authority

The Air Force Personnel Center has been granted expanded waiver authority to waive some active duty service commitments for Airmen interested in voluntary separation under the fiscal year 2014 force management program, AFPC officials announced April 3. For example, we now have the authority to waive aviation retention pay (which requires recoupment of the unserved...
 

 

Gaining Altitude – Growth Opportunities for the Week

Through our character – an opportunity to reflect on important issues in our community - There is an old saying: “Give someone a fish and you feed them for a day; teach someone to fish and you feed them for life.” The same is true in developing character. ¬†You can give a law or command...
 
 
afrc-x56c

X-56A testbed arrives at NASA Armstrong Flight Research Center

NASA photograph by Ken Ulbrich The diminutive X-56A Multi-Use Technology Testbed, mounted on a small trailer, is pulled away from its home for the past year, Hangar 4305 at Edwards’ North Base. The latest in a long series...
 
 

Air Force updates officer, enlisted voluntary force management eligibility lists*

Select Airmen in specific categories who were not formerly eligible for fiscal year 2014 force management voluntary separation are now being offered voluntary separation. These individuals will not be subject to involuntary programs in fiscal year 2014. Officers from 33 Air Force specialty codes by year group and enlisted Airmen from seven AFSCs by grade...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>