NASA

March 22, 2013

Jetsons Redux: Developing future aircraft control systems

The quad-rotor model helicopter is flying to validate research on elements of a futuristic control system that has immediate applications for unmanned aircraft systems and potentially to a future personal air vehicle.

When George Jetson was ready to head off to the office he hopped into his bubble-shaped aerocar and zoomed off to work.

Traffic was manageable without cumbersome signals. In addition, he didn’t have to worry about parking because his personal air vehicle conveniently converted into a briefcase.

While the realities of the concepts from the 1960s cartoon have not yet come to pass, two researchers at NASA’s Dryden Flight Research Center are working on technology that could one day make such a vehicle possible. Fitting them in your suitcase? Well, that’s still a ways off.

Using an off-the-shelf, quad-rotor, remotely piloted model helicopter with its own piloting system, Matt Redifer and Loyd Hook can do the math to develop algorithms needed for future control systems. They envision these systems being able to safely and reliably operate a personal air vehicle and make many of those solutions part of the standard hardware for easier certification.

For example, programming the vehicle to avoid accidents with other air traffic is a must. The duo said they also believe such a vehicle would need to have a number of autonomously controlled piloting functions to win certification from the Federal Aviation Administration for this futuristic transportation.

Although designed to enhance safety and reliability for an eventual personal air vehicle, the technology also has broad applications for traditional manned and unmanned aircraft. For example, aircraft required to fly near dense urban or residential areas for work such as delivering packages, law enforcement, or disaster preparation and response could benefit as the FAA continues to look at solutions to best integrate manned and unmanned systems in the National Airspace System.

In addition, some uses could be out of this world – a future Mars flying vehicle could use the systems technologies Redifer and Hook are developing.

To begin their research, Redifer and Hook purchased the quad-rotor model aircraft and augmented the autopilot system as part of a NASA Dryden Center Innovation Fund grant. Eventually the system for the quad-rotor aircraft could incorporate global positioning satellite information, map and typographical information. For now, three cameras provide location information to navigate the aircraft.

The idea for the project came from a conversation Hook had with Mark Skoog, NASA’s project manager for several automatic ground collision avoidance system, or GCAS, projects. Skoog thought that the system developed for a military F-16 fighter plane and flown in a simpler form on the Dryden Remotely Operated Integrated Drone, or DROID, could be modified to work with a personal air vehicle. The concept was to make it possible to fly the vehicle in an autonomous mode, like an aircraft, but make it as easy to drive as a car, Hook explained.

FAA certification requirements for analytical systems that learn and predict situations would be complicated. For that reason Hook and Redifer chose a multi-layered system approach, Hook said. A standard flight control system is the first layer with safety critical systems constituting a middle layer that also has a GCAS with the authority to tell the higher level “thinking” systems that it can’t perform certain maneuvers. For example, “The GCAS would tell the computer it can’t fly into the ground,” Hook said.

Redifer is interested in the control challenges of the system. The quad-rotor vehicle can validate and verify that the new subsystems work and lay the foundation for the higher level analytical “thinking” for the system.

“Moving the GCAS algorithms to hardware will increase the reliability that will be essential for a future personal air vehicle,” Redifer added.

Project goals include demonstration of the multi-level autonomous piloting system.

“We want to have all the systems you would need,” Hook said, “and demonstrate the multi-layer approach that will apply to unmanned aircraft systems in the short term and one day to a personal air vehicle. Such a future vehicle also will have health monitoring systems to indicate if there are troubles prior to takeoff, its destination and where it will land if an emergency develops.”

A personal air vehicle is still a futuristic concept. However, the technology to make way for that possibility while making current aircraft systems safer and more reliable is underway today at NASA Dryden.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by Jim Yungel

NASA DC-8 continues west Antarctic ice study

NASA photograph by Jim Yungel The Thurston Island calving front off of western Antarctica as seen from the window of NASA’s DC-8 flying observatory Nov. 5, 2014. NASA’s DC-8 flying laboratory has two weeks of suppor...
 
 
NASA photograph

NASA Armstrong celebrates 50th anniversary of LLRV first flight

NASA photograph by Ken Ulbrich NASA Armstrong hosted a colloquium to celebrate the 50th anniversary of the first LLRV flight. Guests included original team members, from left, Wayne Ottinger, Dave Stoddard Glenn Angle, Gene Mat...
 
 
NASA photograph by Tom Tschida

NASA Armstrong Support Center receives LEED platinum certification

NASA photograph by Tom Tschida Large expanses of windows and curved rooflines highlight NASA Armstrong’s new Facilities Support Center. The 38,000-square-foot structure has been certified that it met the Leadership in Ene...
 

 
NASA/NSERC photograph by Jane Peterson

College students study Earth from NASA’s DC-8 flying lab

NASA/NSERC photograph by Jane Peterson Jonathan Hemingway, an applied meteorology and computational mathematics major at Embry-Riddle Aeronautical University in Florida, assists in installation of the Whole Air Sampler instrume...
 
 
NASA photograph by Jim Ross

NASA Aeronautics makes strides to bring back supersonic passenger travel

NASA photograph by Jim Ross NASA F/A-18 mission support aircraft were used to create low-intensity sonic booms during a resaerch project at the agency’s Armstrong Flight Research Center in Edwards, California. The Wavefor...
 
 
Image courtesy of NASA/SOFIA/EXES/Mathew Richter

NASA begins testing of new spectrograph on agency’s airborne observatory

Image courtesy of NASA/SOFIA/EXES/Mathew Richter EXES, the Echelon-Cross-Echelle Spectrograph, made its first light commissioning flight on April 7, 2014 on NASA’s SOFIA flying observatory. The instrument, shown mounted t...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>