NASA

March 22, 2013

Jetsons Redux: Developing future aircraft control systems

The quad-rotor model helicopter is flying to validate research on elements of a futuristic control system that has immediate applications for unmanned aircraft systems and potentially to a future personal air vehicle.

When George Jetson was ready to head off to the office he hopped into his bubble-shaped aerocar and zoomed off to work.

Traffic was manageable without cumbersome signals. In addition, he didn’t have to worry about parking because his personal air vehicle conveniently converted into a briefcase.

While the realities of the concepts from the 1960s cartoon have not yet come to pass, two researchers at NASA’s Dryden Flight Research Center are working on technology that could one day make such a vehicle possible. Fitting them in your suitcase? Well, that’s still a ways off.

Using an off-the-shelf, quad-rotor, remotely piloted model helicopter with its own piloting system, Matt Redifer and Loyd Hook can do the math to develop algorithms needed for future control systems. They envision these systems being able to safely and reliably operate a personal air vehicle and make many of those solutions part of the standard hardware for easier certification.

For example, programming the vehicle to avoid accidents with other air traffic is a must. The duo said they also believe such a vehicle would need to have a number of autonomously controlled piloting functions to win certification from the Federal Aviation Administration for this futuristic transportation.

Although designed to enhance safety and reliability for an eventual personal air vehicle, the technology also has broad applications for traditional manned and unmanned aircraft. For example, aircraft required to fly near dense urban or residential areas for work such as delivering packages, law enforcement, or disaster preparation and response could benefit as the FAA continues to look at solutions to best integrate manned and unmanned systems in the National Airspace System.

In addition, some uses could be out of this world – a future Mars flying vehicle could use the systems technologies Redifer and Hook are developing.

To begin their research, Redifer and Hook purchased the quad-rotor model aircraft and augmented the autopilot system as part of a NASA Dryden Center Innovation Fund grant. Eventually the system for the quad-rotor aircraft could incorporate global positioning satellite information, map and typographical information. For now, three cameras provide location information to navigate the aircraft.

The idea for the project came from a conversation Hook had with Mark Skoog, NASA’s project manager for several automatic ground collision avoidance system, or GCAS, projects. Skoog thought that the system developed for a military F-16 fighter plane and flown in a simpler form on the Dryden Remotely Operated Integrated Drone, or DROID, could be modified to work with a personal air vehicle. The concept was to make it possible to fly the vehicle in an autonomous mode, like an aircraft, but make it as easy to drive as a car, Hook explained.

FAA certification requirements for analytical systems that learn and predict situations would be complicated. For that reason Hook and Redifer chose a multi-layered system approach, Hook said. A standard flight control system is the first layer with safety critical systems constituting a middle layer that also has a GCAS with the authority to tell the higher level “thinking” systems that it can’t perform certain maneuvers. For example, “The GCAS would tell the computer it can’t fly into the ground,” Hook said.

Redifer is interested in the control challenges of the system. The quad-rotor vehicle can validate and verify that the new subsystems work and lay the foundation for the higher level analytical “thinking” for the system.

“Moving the GCAS algorithms to hardware will increase the reliability that will be essential for a future personal air vehicle,” Redifer added.

Project goals include demonstration of the multi-level autonomous piloting system.

“We want to have all the systems you would need,” Hook said, “and demonstrate the multi-layer approach that will apply to unmanned aircraft systems in the short term and one day to a personal air vehicle. Such a future vehicle also will have health monitoring systems to indicate if there are troubles prior to takeoff, its destination and where it will land if an emergency develops.”

A personal air vehicle is still a futuristic concept. However, the technology to make way for that possibility while making current aircraft systems safer and more reliable is underway today at NASA Dryden.




All of this week's top headlines to your email every Friday.


 
 

 

NASA signs agreement with German, Canadian partners to test alternative fuels

NASA has signed separate agreements with the German Aerospace Center and the National Research Council of Canada to conduct a series of joint flight tests to study the atmospheric effects of emissions from jet engines burning alternative fuels. The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS II) flights are set to begin May...
 
 

NASA seeks suborbital flight services proposals for technology demonstrations

NASA is seeking proposals from U.S. commercial suborbital reusable launch vehicle providers to integrate and fly technology payloads for the space agency. NASA uses companies for suborbital flights to encourage and facilitate the growth of this important aerospace market while also providing a means to advance a wide range of new launch vehicle and space...
 
 
Air Force photograph by Rebecca Amber

‘Operation Play and Sleigh’ a success

Air Force photograph by Rebecca Amber The 412th Security Forces Squadron Training Section held a Ruck March and Toy Drive Dec. 20 for children at the A. Miriam Jamison Childrenís Center in Kern County, Calif. Participants carr...
 

 
NASA photograph

NASA Dryden celebrates 60th anniversary of first Mach 2 flight

NASA photograph One of the three Douglas Skyrockets rockets upward during a research flight. Sixty years ago, A. Scott Crossfield, a talented young engineering research pilot for the National Advisory Committee for Aeronautics,...
 
 
NASA photograph by Jim Ross

NASA tests SLS autopilot technology on F/A-18 Jet

NASA photograph by Jim Ross An F/A-18 research jet simulated various flight conditions that NASA’s Space Launch System may experience as it makes its way from the launch pad to space, to evaluate the rocket’s flight...
 
 

NASA Dryden awards facilities maintenance contract to Helix Management Services

NASA’s Dryden Flight Research Center, Edwards, Calif., has awarded a contract to Helix Management Services, of Lanham, Md., to provide facility operations and maintenance services at the center’s campuses at Edwards Air Force Base and Palmdale, Calif. The firm fixed-price contract could be worth as much as $29.4 million over the five-year life of the...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>