Tech

March 30, 2012

NASA’s SOFIA captures images of the planetary nebula M2-9


NASA/DLR/USRA/DSI/FORCAST team photograph
NASA's SOFIA telescope and the FORCAST instrument captured this color-composite image of the planetary nebula Minkowski 2-9 (M2-9) showing a dying sun-like star.

Researchers using NASA’s Stratospheric Observatory for Infrared Astronomy have captured infrared images of the last exhalations of a dying sun-like star.

The object observed by SOFIA, planetary nebula Minkowski 2-9, or M2-9 for short, is seen in this three-color composite image.

The SOFIA observations were made at the mid-infrared wavelengths of 20, 24, and 37 microns. The 37-micron wavelength band detects the strongest emissions from the nebula and is impossible to observe from ground-based telescopes.

Objects such as M2-9 are called planetary nebulae due to a mistake made by early astronomers who discovered these objects while sweeping the sky with small telescopes. Many of these nebulae have the color, shape and size of Uranus and Neptune, so they were dubbed planetary nebulae. The name persists despite the fact that these nebulae are now known to be distant clouds of material, far beyond our solar system, that are shed by stars about the size of our sun undergoing upheavals during their final life stages.

Although the M2-9 nebular material is flowing out from a spherical star, it is extended in one dimension, appearing as a cylinder or hourglass. Astronomers hypothesize that planetary nebulae with such shapes are produced by opposing flows of high-speed material caused by a disk of material around the dying star at the center of the nebula. SOFIA’s observations of M2-9 were designed to study the outflow in detail with the goal of better understanding this stellar life cycle stage that is important in our galaxy’s evolution.

“The SOFIA images provide our most complete picture of the outflowing material on its way to being recycled into the next generation of stars and planets,” said Michael Werner of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., principal investigator of these observations. “We were gratified to see the lobes so clearly using SOFIA. These early results demonstrate the scientific potential of this important new observatory.”

The observations were made using the Faint Object Infrared Camera for the SOFIA Telescope instrument in June 2011 by a team consisting of astronomers from JPL, the California Institute of Technology, the University of California at Los Angeles, Cornell University and Ithaca College, Ithaca, N.Y. Preliminary analyses of these data were first presented in January 2012 at the American Astronomical Society meeting in Austin, Texas.

The SOFIA observatory combines an extensively modified Boeing 747SP aircraft and a 17-metric-ton reflecting telescope with an effective diameter of 2.5 meters (100 inches) to altitudes as high as 45,000 feet (14 km), above more than 99 percent of the water vapor in Earth’s atmosphere that blocks most infrared radiation from celestial sources.

SOFIA is a joint project of NASA and the German Aerospace Center, and is based and managed at NASA’s Dryden Aircraft Operations Facility in Palmdale, Calif. NASA’s Ames Research Center in Moffett Field, Calif., manages the SOFIA science and mission operations in cooperation with the Universities Space Research Association, headquartered in Columbia, Md., and the German SOFIA Institute at the University of Stuttgart.




All of this week's top headlines to your email every Friday.


 
 

 
KMel Robotics photograph

Researchers test insect-inspired robots

KMel Robotics photograph These nano-quads are the size that the U.S. Army Research Laboratory Micro-Autonomous Systems Technology consortium of researchers envision. The current state is about as compact as a microwave oven. &n...
 
 
NASA photograph

NASA teams with South Korean agency to further improve air traffic management

NASA photograph Jaiwon Shin, NASAís associate administrator for Aeronautics Research, and Jaeboong Lee, president of the Korea Agency for Infrastructure Technology Advancement, signed an agreement Nov. 17, 2014 in Seoul, South...
 
 

Air Force funds research on thermal management technology for fighter aircraft

Managing heat that is generated by electronic subsystems in next-generation aircraft is a vexing challenge for aerospace system designers. In the interest of meeting this challenge, the Air Force recently provided follow-on funding for a Small Business Innovation Research effort that is identifying improved methods for heat conduction and rejection from system electronics for advanced...
 

 

Report: Major federal lab misused contract funds

Managers at one of the nation’s premier federal laboratories improperly used taxpayer funds to influence members of Congress and other officials as part of an effort to extend the lab’s $2.4 billion management contract, the U.S. Department of Energy’s Office of Inspector General said in a report Nov. 12. A review of documents determined that...
 
 

Teams announced for NASA 2015 robotics operations competition

Eight universities have advanced to the next round of “RASC-AL Robo-Ops,” a planetary rover robotics engineering competition sponsored by NASA and organized by the National Institute of Aerospace. The teams selected are California State University Long Beach, Massachusetts Institute of Technology, Cambridge; San Jose State University in California; University of Buffalo in New York;...
 
 
NASA photograph by Ken Ulbrich

NASA tests revolutionary shape changing aircraft flap for first time

NASA photograph by Ken Ulbrich For taxi testing Oct. 31, 2014, at NASA’s Armstrong Flight Research Center at Edwards Air Force Base, Calif., the Adaptive Compliant Trailing Edge flap was extended to 20 degrees deflection. Fli...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>