Business

April 3, 2012

Boeing successfully completes parachute drop test of CSTT


Boeing successfully completed a parachute drop test of the company’s Crew Space Transportation-100 spacecraft April 3 at the Delmar Dry Lake Bed near Alamo, Nev.

CST-100 is part of the Boeing Commercial Crew Transportation System, which will provide the United States with the capability to transport people and cargo to the International Space Station, the Bigelow Aerospace Complex and other destinations in low Earth orbit.

An Erickson Sky Crane helicopter lifted the CST-100 test article to about 11,000 feet and released it. Three main parachutes deployed to slow the capsule’s descent before six airbags inflated, providing a smooth ground landing. The event was the first drop test of the fully combined vehicle landing system, including all elements.

“This successful test is a tremendous milestone that brings Boeing one step closer to completing development of a system that will provide safe, reliable and affordable crewed access to space,” said John Mulholland, vice president and program manager, Boeing Commercial Programs.

Boeing is drawing on its significant knowledge, testing and experience gained from the Apollo missions as it develops and tests the CCTS. Leveraging re-entry and ocean landing data from the Apollo program, the rigorous CST-100 landing tests will reduce risk and validate the post re-entry landing and recovery capability of this system.

As part of the Boeing Commercial Crew team, Bigelow Aerospace played a key role by providing the capsule test article and associated electronics and supporting the test itself. Bigelow Aerospace is a Boeing customer, with plans to use the CCTS for transportation to and from Bigelow on-orbit platforms. Boeing and Bigelow Aerospace are partnering to advance the commercial space market by offering opportunities for integrated transportation and on-orbit platform capabilities and services to new customers.

The team is planning a second test later this month, following parachute inspection and re-packing. This second drop test will include a drogue parachute deployment sequence on top of the main parachute deployment, demonstrating the full, nominal parachute system performance.

Boeing has scheduled additional tests to be performed in 2012, including a landing air bag test series in May, a forward heat shield jettison test in June, and an orbital maneuvering/attitude control engine hot fire test in June — all to gather additional data on key functional elements of the spacecraft design.

The Boeing Commercial Crew program includes the design, manufacture, test and evaluation, and demonstration of the CST-100 spacecraft, launch vehicle and mission operations — all part of Boeing’s Commercial Crew Transportation System — for NASA’s Commercial Crew Development program.

The CST-100 is a reusable capsule-shaped spacecraft based on proven materials and subsystem technologies that can transport up to seven people, or a combination of people and cargo. Boeing has designed the spacecraft to be compatible with a variety of expendable rockets. The company has selected United Launch Alliance’s Atlas V launch vehicle for initial CST-100 test flights in 2015-16.




All of this week's top headlines to your email every Friday.


 
 

 
Courtesy graphic

Lockheed Martin conducts flight tests of aircraft laser turret for DARPA

AFRL photograph The Aero-adaptive Aero-optic Beam Control turret that Lockheed Martin is developing for the Defense Advanced Research Projects Agency and the Air Force Research Laboratory has completed initial flight testing. T...
 
 

Lockheed Martin advances live, virtual, constructive training in flight test

https://www.youtube.com/watch?feature=player_embedded&v=jvXmOW8L3mU Lockheed Martin successfully tested a new solution for integrated live, virtual and constructive training during a flight demonstration at the company’s Aeronautics facility in Fort Worth, Texas. During the flight test, a pilot flying in a live F-16 engaged in a synthetic training exercise with a pilot flying as wing...
 
 

Raytheon begins full rate production on TALON Laser Guided Rockets

Under a $117 million contract awarded to Raytheon, Raytheon Missile Systems has begun production of the TALON Laser Guided Rocket. In 2013, the Armed Forces General Headquarters of the United Arab Emirates awarded Tawazun a contract to procure the TALON Laser Guided Rocket. “Full rate production of the TALON LGR is a significant milestone for...
 

 

Advanced Photonix awarded contract for U.S. Navy missile weapons program

Advanced Photonix, Inc.® announced Sept. 15 that it has received a contract worth approximately $1,600,000 from a leading military contractor, which acts as a prime supplier for the U.S. Navy’s Guided Missile Weapon System. The contract is for a custom photodiode and is expected to be completed within the next 18 months, and payment is...
 
 

U.S. Air Force expands RQ-4 Global Hawk fleet

The U.S. Air Force has awarded Northrop Grumman a $354 million primarily firm-fixed-price contract to expand their RQ-4 Global Hawk unmanned aircraft system fleet by three aircraft. Global Hawk operates multiple sensors simultaneously to gather intelligence, surveillance and reconnaissance data. The new aircraft are Multi-INT models that carry sophisticated imaging and electronic signals sensor...
 
 

U.S. Navy awards General Dynamics $234 million for nuclear-sub support work

The U.S. Navy has awarded a $234 million contract to General Dynamics Electric Boat to provide planning yard work, engineering and technical support for nuclear submarines. The contract has a total potential value of $1.5 billion over five years if all options are exercised. Electric Boat is a wholly owned subsidiary of General Dynamics. Under...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>