Defense

April 13, 2012

Future aircraft to be faster, have smaller logistics footprint

by C. Todd Lopez
Army News Service

The Army’s aircraft of the future will be faster than what the service has now, it will carry more weight, it will require less of a logistical footprint, and officials said it will better do what Army aviation is meant to do: serve the ground commander.

While what is now being called “Future Vertical Lift,” or FVL, by the Army is still a concept, its capabilities are already known.

The FVL concept will be “able to support the Army and the ground commanders better than we can do it today,” said Maj. Gen. Anthony G. Crutchfield, commander, U.S. Army Aviation Center of Excellence.” I see this aircraft being able to do all the missions that we currently do. I see the aircraft that can do it because it can be scaled. It may be a medium variant, something that is the size of maybe a Black Hawk or an Apache is today, that can do the attack mission, or the assault/lift mission. I see the same aircraft scaled smaller that will be able to do the reconnaissance mission, similar to what a Kiowa Warrior does today.”

Crutchfield said it’s not known if the FVL concept will end up producing a rotary-wing aircraft, like the Army AH-64 Apache, or a tilt-rotor aircraft like the Marine Corps MV-22 Osprey.

What the FVL will do is perform missions the Army does today with its aviation assets, missions that will not change.

“The vision is that we can have an aircraft that can do all the missions that we currently have,” he said. “Our missions will not change. We still will do attack and reconnaissance, we still will do sustainment and troop movements. It’s an enduring mission that will not change. I just want to do it better.”

The FVL aircraft will perform multiple roles, Crutchfield said, and that means that the end result is that there will be fewer types of aircraft in the Army’s fleet. It’s also possible that there will be fewer aircraft overall, because a more capable aircraft means that fewer aircraft will be needed.

“Today there are concepts where there are aircraft that we consider rotary wing, that can fly in excess of 300 knots,” Crutchfield said. “No other aircraft we have today can fly 300 knots. If you have an aircraft that can fly 300 knots, it can cover more terrain faster, and if you can cover more terrain faster, theoretically, you would need less airframes to do the same type mission.”

And because Crutchfield said the idea behind the FVL concept is to have the same aircraft be able to perform multiple missions, the Army will need fewer types of aircraft. That means a smaller number of parts will be needed to sustain the fleet, and a shared pool of maintainers and maintenance equipment. That will result in a reduced cost for logistics.

Crutchfield said that the FVL could come in different sizes, depending on the mission it will perform, but things like engine, drive train, and cockpit components would be the same, common between the two, and swappable.

Today’s Army aircraft, Crutchfield said, are capable. But there is a limit to the performance that can be squeezed from them.

“Although we have great aircraft today, the best in the world, no matter how much money we invest in these aircraft of today – the aircraft are not going to fly any faster than they fly right now,” Crutchfield said. “They are not going to be able to carry any more payload than they do right now. They will not be able to reduce any of the logistical footprint [more] than they do right now. That’s what future vertical lift will do. That’s what we see for the Army Aviation force of 2030.”

It’s expected that this summer, performance specifications for the FVL aircraft will be unveiled. Development of the program is an Army-led, joint program, that includes all military services, including the Coast Guard.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 17, 2014

News: U.S. Air Force tanker platform slated for year-end debut - Boeing is planning for first flight of its 767-2C – upon which the U.S. Air Force’s new KC-46 tanker will be based – by year’s end, six months late. Northrop Grumman wins $657.4 million deal to supply drones to South Korea - Northrop Grumman has won...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 

 
Coast Guard photograph

Navy demonstrates unmanned helicopter operations aboard Coast Guard cutter

http://static.dvidshub.net/media/video/1412/DOD_102145893/DOD_102145893-512×288-442k.mp4 Coast Guard photograph An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast...
 
 
GPS-OCX

GPS III, OCX successfully demonstrate key satellite command, control capabilities

Lockheed Martin and Raytheon successfully completed the fourth of five planned launch and early orbit exercises to demonstrate new automation capabilities, information assurance and launch readiness of the worldís most powerfu...
 
 

Aerojet Rocketdyne successfully demonstrates 3D printed rocket propulsion system for satellites

Aerojet Rocketdyne has successfully completed a hot-fire test of its MPS-120 CubeSat High-Impulse Adaptable Modular Propulsion System. The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>