Space

April 16, 2012

Lockheed Martin completes assembly of Near Infrared Camera for space telescope


Lockheed Martin, under a contract from the University of Arizona, has completed assembly of the Near Infrared Camera Instrument Modules.

NIRCam is the prime near-infrared imaging instrument for NASA’s James Webb Space Telescope.

The work was done at the Lockheed Martin Space Systems Advanced Technology Center in Palo Alto, Calif., where environmental testing is about to begin. U of Az and Lockheed Martin are responsible for the NIRCam instrument design (Optical, Mechanical, Structural, Thermal, Electronic, Precision Mechanisms and Control Software), the instrument control and focal plane electronics and software. Delivery of the NIRCam instrument to the NASA Goddard Space Flight Center is expected to occur in late summer 2012.

“It is very satisfying to have completed assembly of this magnificent astrophysical instrument,” said Jeff Vanden Beukel, Lockheed Martin NIRCam program director. “We look forward, along with all of our other colleagues on the JWST team, to the day when our engineering and manufacturing help produce discoveries and greater understanding of the Universe.”

“As we view the Universe with more powerful tools, not only do we confirm or overturn current concepts, but we always learn new and exciting things,” said Dr. Marcia Rieke of U of Az, and NIRCam principal investigator. “I couldn’t be happier that we’ve reached this milestone, and I’m certain that all of the hard work and terrific collaboration of the NIRCam team will lead to a very big payoff not too far down the line.”

The NIRCam instrument consists of two identical optical imaging modules and contains focal plane assemblies provided by Teledyne Imaging Sensors of Camarillo, Calif. The FPA hardware consists of 40 million pixels, and is designed for cryogenic operation at 35 degrees Kelvin. The FPA hardware requires regulated power, output data synchronization, temperature control and operational mode controls as well as image data conditioning, amplification and digitization. The NIRCam focal plane electronics and its associated software will provide these functions. The FPE hardware and software also convey the image data to the JWST integrated science instrument module command and data handling computer.

NIRCam is the primary near infrared imaging instrument on JWST. It will detect light from the earliest stars and galaxies in the process of formation, young stars in the Milky Way, physical and chemical properties of planets orbiting other stars, and objects within our Solar System. NIRCam is equipped with coronagraphs, instruments that allow astronomers to take pictures of very faint objects around a central bright object, like planets around distant stars. NIRCam’s coronagraphs work by blocking a brighter object’s light, making it possible to view the dimmer object nearby – just like shielding the sun from your eyes with an upraised hand can allow you to focus on the view in front of you. With the coronagraphs, astronomers hope to determine the characteristics of planets orbiting nearby stars.

In addition to Lockheed Martin and the University of Arizona, the NIRCam team comprises Teledyne, and a team of science co-investigators. The team’s NIRCam imager will achieve its mission goals through a compact modular refractive design with exceptionally high observing efficiency. In addition, built-in self-test features will significantly lower integration risk and provide on-orbit calibration.

The James Webb Space Telescope is NASA’s next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, JWST will observe the most distant objects in the universe, provide images of the very first galaxies ever formed, provide insight to how solar systems evolve and help explore planets around distant stars. The Webb telescope is a joint project of NASA, the European Space Agency, and the Canadian Space Agency.

The NASA Goddard Space Flight Center manages the JWST project. Principal Investigators under contract to NASA, ESA, and CSA are developing scientific instruments for the observatory. The Space Telescope Science Institute in Baltimore, Md. is developing the ground system for the mission and will be responsible for observatory operations and science program management.

NIRCam is one of the scientific instruments managed by Lockheed Martin’s Sensing & Exploration Systems line of business. The instrument was designed and built at the ATC in Palo Alto, Calif. The ATC is the research and development organization of Lockheed Martin Space Systems Company. LMSSC, a major operating unit of Lockheed Martin Corporation, designs and develops, tests, manufactures and operates a full spectrum of advanced-technology systems for national security and military, civil government and commercial customers. Chief products include human space flight systems; a full range of remote sensing, navigation, meteorological and communications satellites and instruments; space observatories and interplanetary spacecraft; laser radar; ballistic missiles; missile defense systems; and nanotechnology research and development.

 




All of this week's top headlines to your email every Friday.


 
 

 
Image courtesy of NASA/CXC/M. Weiss

NASA’s Chandra X-ray Observatory finds planet that makes star act deceptively old

Image courtesy of NASA/CXC/M. Weiss A new study from NASA’s Chandra X-ray Observatory shows that a giant exoplanet, WASP-18b, is making the star that it orbits very closely act much older than it actually is. This artist&...
 
 
NASA photographs by Tom Tschida

NASA Shuttle Carrier Aircraft 911 moves to final home

NASA photographs by Tom Tschida NASA 911, one of two retired Shuttle Carrier Aircraft that ferried NASA’s space shuttles across the country for three decades, is towed from NASA Armstrong’s Bldg. 703 on its final journey to...
 
 
Image courtesy of NASA/JPL-Caltech/Univ. of Arizona

NASA’s Mars Curiosity rover arrives at Martian mountain

NASA’s Mars Curiosity rover has reached the Red Planet’s Mount Sharp, a Mount-Rainier-size mountain at the center of the vast Gale Crater and the rover mission’s long-term prime destination. “Curiosity n...
 

 

NASA announces 2014 aeronautics scholarship recipients

NASA has selected 20 students from across the nation to receive the agency’s Aeronautics Scholarship for the 2014-2015 school year. This scholarship program, which is in its seventh year, is designed to assist undergraduate and graduate students enrolled in fields of study related to aeronautics. Recipients were selected from hundreds of applications to the program....
 
 
NASA photograph by Dan Casper

NASA’s Orion spacecraft nears completion, ready for fueling

NASA photograph by Dan Casper The Orion crew module, stacked atop its service module, moved out of the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on Sept 11. Orion was transporte...
 
 

NASA awards cross-track infrared sounder instrument for the JPSS-2

NASA has awarded a sole source contract modification to Exelis, Inc., Geospatial Systems, of Fort Wayne, Ind., for the Cross-track Infrared Sounder Instrument for flight on the Joint Polar Satellite System-2 mission. This is a cost-plus-award-fee modification in the amount of $221 million. This action extends the period of performance of the contract from November...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>