Tech

April 17, 2012

New sensor sought to enable military missions in GPS-denied areas


darpa-sensor

Many U.S. Military systems, such as missiles, rely on the Global Positioning System to provide accurate position, orientation and time information while in flight.

When GPS is inaccessible, whether as a result of a malfunction or as a consequence of enemy action, information critical for navigation must be gathered using the missile’s on-board sensors.

DARPA’s Chip-Scale Combinatorial Atomic Navigator effort seeks an atomic inertial sensor to measure orientation in GPS-denied environments. Such a sensor would integrate small size, low power consumption, high resolution of motion detection and a fast start up time into a single package.

“Platforms such as missiles rely on GPS for a variety of information,” explained Andrei Shkel, DARPA program manager. “When GPS is not available gyroscopes provide orientation, accelerometers provide position and oscillators provide timing. The new C-SCAN effort focuses on replacing bulky gyroscopes with a new inertial measurement unit that is smaller, less expensive due to foundry fabrication and yields better performance.”

The inertial measurement unit sought by C-SCAN will co-integrate both solid state and atomic inertial sensors into a single microsystem. This new IMU would benefit from devices with dissimilar physics, yet complementary characteristics: short startup times, and long-term, stable performance.

Before C-SCAN can be built, research is needed to explore the miniaturization and co-fabrication of atomic sensors with solid-state inertial sensors. Algorithms and architectures are sought to seamlessly co-integrate the components. Those wishing to participate in the C-SCAN effort are encouraged to review the full solicitation located at www.fbo.gov.

C-SCAN supports the Micro-Technology for Positioning, Navigation and Timing (micro-PNT) program, which is developing micro-technology for self-contained, chip-scale inertial navigation and precision guidance that would greatly reduce the dependence on GPS while enabling uncompromised navigation and guidance capabilities for advanced munitions, various military platforms, under a wide range of operation conditions.




All of this week's top headlines to your email every Friday.


 
 

 
darpa-notice

DARPA Tactical Technology Office invites innovative risk-takers to attend 2014 Office-Wide Proposers Day

DARPAs Tactical Technology Office invests in innovative platforms, weapons, integrated systems and critical systems components that often incorporate emerging advanced technologies, all designed to preserve and extend decisive ...
 
 

AFRL provides environmentally-preferred alternatives for removing radome coatings

Radomes, tail cones, and other fiberglass or composite components on E-3, KC-135, and B-52 aircraft are coated with polyurethane rain erosion resistant coatings to protect them from the effects of rain erosion in flight. Oklahoma City Air Logistics Complex (OC-ALC) production workers must remove the coatings during depot overhaul to allow for inspection and repair....
 
 
darpa-uav-network

Remote troops closer to having high-speed wireless networks mounted on UAVs

Missions in remote, forward operating locations often suffer from a lack of connectivity to tactical operation centers and access to valuable intelligence, surveillance, and reconnaissance data. The assets needed for long-range...
 

 
Photograph courtesy of Research Center for Marine Geosciences/DLR

NASA signs agreement with German, Canadian partners to test alternative fuels

NASA photograph A heavily instrumented NASA HU-25 Falcon measures chemical components from the larger DC-8′s exhaust generated by a 50/50 mix of conventional jet fuel and a plant-derived biofuel, demonstrating the type of...
 
 
darpa-phoenix2

Phoenix makes strides in orbital robotics, satellite architecture research

The process of designing, developing, building and deploying satellites is long and expensive. Satellites today cannot follow the terrestrial paradigm of “assemble, repair, upgrade, reuse,” and must be designed to operate w...
 
 

AFRL researchers uncover structural, function relationships in bioinspired nanomaterials

In his 1954 work, The Nature of Science, Edwin Powell Hubble said, “Equipped with his five senses, man explores the universe around him and calls the adventure Science.” During his tenure with the Air Force Research Laboratory, National Research Council associate Dr. Nick Bedford, embarked on such an adventure that applied both biological and physical...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>