Tech

April 17, 2012

New sensor sought to enable military missions in GPS-denied areas


darpa-sensor

Many U.S. Military systems, such as missiles, rely on the Global Positioning System to provide accurate position, orientation and time information while in flight.

When GPS is inaccessible, whether as a result of a malfunction or as a consequence of enemy action, information critical for navigation must be gathered using the missile’s on-board sensors.

DARPA’s Chip-Scale Combinatorial Atomic Navigator effort seeks an atomic inertial sensor to measure orientation in GPS-denied environments. Such a sensor would integrate small size, low power consumption, high resolution of motion detection and a fast start up time into a single package.

“Platforms such as missiles rely on GPS for a variety of information,” explained Andrei Shkel, DARPA program manager. “When GPS is not available gyroscopes provide orientation, accelerometers provide position and oscillators provide timing. The new C-SCAN effort focuses on replacing bulky gyroscopes with a new inertial measurement unit that is smaller, less expensive due to foundry fabrication and yields better performance.”

The inertial measurement unit sought by C-SCAN will co-integrate both solid state and atomic inertial sensors into a single microsystem. This new IMU would benefit from devices with dissimilar physics, yet complementary characteristics: short startup times, and long-term, stable performance.

Before C-SCAN can be built, research is needed to explore the miniaturization and co-fabrication of atomic sensors with solid-state inertial sensors. Algorithms and architectures are sought to seamlessly co-integrate the components. Those wishing to participate in the C-SCAN effort are encouraged to review the full solicitation located at www.fbo.gov.

C-SCAN supports the Micro-Technology for Positioning, Navigation and Timing (micro-PNT) program, which is developing micro-technology for self-contained, chip-scale inertial navigation and precision guidance that would greatly reduce the dependence on GPS while enabling uncompromised navigation and guidance capabilities for advanced munitions, various military platforms, under a wide range of operation conditions.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by Tom Tschida

NASA Armstrong leads team to test effects of volcanic ash on aircraft engines

NASA photograph by Tom Tschida Volcanic ash is sprayed into one of the F117 engines of a C-17 during the final phase of the Vehicle Integrated Propulsion Research (VIPR) project July 9 at Edwards. The VIPR team, comprised of NA...
 
 
NASA photograph

NASA, partners test unmanned aircraft systems

NASA photograph NASA’s Ikhana is being used to test a system that will allow uncrewed aircraft to fly routine operations within the National Airspace System. NASA, working with government and industry partners, is testing...
 
 
NASA photograph

NASA-developed air traffic management tool flies into use

NASA photograph NASA Future Flight Central is a national Air Traffic Control/Air Traffic Management (ATC/ATM) simulation facility. The two-story facility offers a 360-degree full-scale, real-time simulation of an airport, where...
 

 
NASA photograph

Robotics teams prepare to compete for $1.5 million in NASA Challenge

NASA photograph The Los Angeles team Survey’s robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at t...
 
 

NASA invests in future of aviation with supersonic research projects

Quieter, greener supersonic travel is the focus of eight studies selected by NASAĆ­s Commercial Supersonic Technology Project to receive more than $2.3 million in funding for research that may help overcome the remaining barriers to commercial supersonic flight. The research, which will be conducted by universities and industry, will address sonic booms and high-altitude emissions...
 
 
afrl-sensors

Sensors Directorate co-sponsors autonomous aerial vehicle competition

Members from the University of Toledo, Ohio, team make adjustments to their multirotor aircraft prior to the autonomous aerial vehicle competition. The Air Force Research Laboratory Sensors Directorate hosted the event April 28...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>