Space

April 19, 2012

NASA mission wants amateur astronomers to target asteroids

A new NASA outreach project will enlist the help of amateur astronomers to discover near-Earth objects and study their characteristics.

NEOs are asteroids with orbits that occasionally bring them close to the Earth.

Starting April 18, a new citizen science project called “Target Asteroids!” will support NASA’s Origins Spectral Interpretation Resource Identification Security – Regolith Explorer (OSIRIS-REx) mission objectives to improve basic scientific understanding of NEOs. OSIRIS-Rex is scheduled for launch in 2016 and will study material from an asteroid.

Amateur astronomers will help better characterize the population of NEOs, including their position, motion, rotation and changes in the intensity of light they emit. Professional astronomers will use this information to refine theoretical models of asteroids, improving their understanding about asteroids similar to the one OSIRIS-Rex will encounter in 2019, designated 1999 RQ36.

OSIRIS-Rex will map the asteroid’s global properties, measure non-gravitational forces and provide observations that can be compared with data obtained by telescope observations from Earth. In 2023, OSIRIS-REx will return back to Earth at least 2.11 ounces (60 grams) of surface material from the asteroid.

Target Asteroids! data will be useful for comparisons with actual mission data. The project team plans to expand participants in 2014 to students and teachers.

“Although few amateur astronomers have the capability to observe 1999 RQ36 itself, they do have the capability to observe other targets,” said Jason Dworkin, OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Previous observations indicate 1999 RQ36 is made of primitive materials. OSIRIS-REx will supply a wealth of information about the asteroid’s composition and structure. Data also will provide new insights into the nature of the early solar system and its evolution, orbits of NEOs and their impact risks, and the building blocks that led to life on Earth.

Amateur astronomers long have provided NEO tracking observations in support of NASA’s NEO Observation Program. A better understanding of NEOs is a critically important precursor in the selection and targeting of future asteroid missions.

“For well over 10 years, amateurs have been important contributors in the refinement of orbits for newly discovered near-Earth objects,” said Edward Beshore, deputy principal investigator for the OSIRIS-REx mission at the University of Arizona in Tucson.

NASA’s Goddard Space Flight Center in Greenbelt, Md., will provide overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. Dante Lauretta is the mission’s principal investigator at the University of Arizona. Lockheed Martin Space Systems in Denver will build the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Ala., manages New Frontiers for the agency’s Science Mission Directorate in Washington.

 

For more information on Target Asteroids! and OSIRIS-REx, visit http://osiris-rex.lpl.arizona.edu.

 




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

NASA’s Orion Spacecraft powers through first integrated system testing

Lockheed Martin photograph Engineers in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, perform avionics testing on the Orion spacecraft being prepared for its first trip to space later this ye...
 
 

NASA’s Hubble extends stellar tape measure 10 times farther into space

Using NASA’s Hubble Space Telescope, astronomers now can precisely measure the distance of stars up to 10,000 light-years away – 10 times farther than previously possible. Astronomers have developed yet another novel way to use the 24-year-old space telescope by employing a technique called spatial scanning, which dramatically improves Hubble’s accuracy for making angular meas...
 
 
LM-AEHF

Fourth AEHF protected communications satellite begins integration months ahead of schedule

The fourth Advanced Extremely High Frequency satellite produced by Lockheed Martin is taking shape after early deliveries of its payload and propulsion core. AEHF-4, expected to launch in 2017, will enable the constellation to ...
 

 
nasa-telescope

NASA looks to go beyond batteries for space exploration

NASA is seeking proposals for the development of new, more capable, energy storage technologies to replace the battery technology that has long powered America’s space program. The core technologies solicited in the Wedne...
 
 

Near Infrared Camera Integrated into space telescope

Lockheed Martin and the University of Arizona have delivered the primary imaging instrument of the James Webb Space Telescope to NASA’s Goddard Space Flight Center. The new Near Infrared Camera, or NIRCam, has been successfully integrated within the heart of the telescope, known as the Integrated Science Instrument Module. The integration completes the suite of...
 
 

NASA awards robotics, vehicle, graphics simulation services contract

NASA has selected MacLean Engineering & Applied Technologies of Houston to provide simulation model development for organizations at the agency’s Johnson Space Center, also in Houston. This indefinite-delivery, indefinite-quantity contract has firm-fixed price and cost-plus fixed-fee task orders. Beginning July 1, the contract has a three-year base period followed by two one-year opt...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>