Tech

April 24, 2012

NASA tests GPS monitoring system for big U.S. earthquakes

The space-based technology that lets GPS-equipped motorists constantly update their precise location will undergo a major test of its ability to rapidly pinpoint the location and magnitude of strong earthquakes across the western United States.

Results from the new Real-time Earthquake Analysis for Disaster Mitigation Network soon could be used to assist prompt disaster response and more accurate tsunami warnings.

The new research network builds on decades of technology development supported by the National Science Foundation, the Department of Defense, NASA, and the U.S. Geological Survey. The network uses real-time GPS measurements from nearly 500 stations throughout California, Oregon and Washington. When a large earthquake is detected, GPS data are used to automatically calculate its vital characteristics including location, magnitude and details about the fault rupture.

“With the READI network we are enabling continued development of real-time GPS technologies to advance national and international early warning disaster systems,” said Craig Dobson, natural hazards program manager in the Earth Science Division at NASA Headquarters in Washington. “This prototype system is a significant step towards realizing the goal of providing Pacific basin-wide natural hazards capability around the Pacific ‘Ring of Fire.'”

Accurate and rapid identification of earthquakes of magnitude 6.0 and stronger is critical for disaster response and mitigation efforts, especially for tsunamis. Calculating the strength of a tsunami requires detailed knowledge of the size of the earthquake and associated ground movements. Acquiring this type of data for very large earthquakes is a challenge for traditional seismological instruments that measure ground shaking.

High-precision, second-by-second measurements of ground displacements using GPS have been shown to reduce the time needed to characterize large earthquakes and to increase the accuracy of subsequent tsunami predictions. After the capabilities of the network have been fully demonstrated, it is intended to be used by appropriate natural hazard monitoring agencies. USGS and the National Oceanic and Atmospheric Administration are responsible for detecting and issuing warnings on earthquakes and tsunamis, respectively.

“By using GPS to measure ground deformation from large earthquakes, we can reduce the time needed to locate and characterize the damage from large seismic events to several minutes,” said Yehuda Bock, director of Scripps Institution of Oceanography’s Orbit and Permanent Array Center in La Jolla, Calif. “We now are poised to fully test the prototype system this year.”

The READI network is a collaboration of many institutions including Scripps at the University of California in San Diego; Central Washington University in Ellensburg; the University of Nevada in Reno; California Institute of Technology/Jet Propulsion Laboratory in Pasadena; UNAVCO in Boulder, Colo.; and the University of California at Berkeley.

NASA, NSF, USGS, and other federal, state, and local partners support the GPS stations in the network, including the EarthScope Plate Boundary Observatory, the Pacific Northwest Geodetic Array, the Bay Area Regional Deformation Array and the California Real-Time Network.

“The relatively small investments in GPS-based natural hazards systems have revolutionized the way we view the Earth and allowed us to develop this prototype system with great potential benefits for the infrastructure and population in earthquake-prone states in the western United States,” said Frank Webb, Earth Science Advanced Mission Concepts program manager at JPL.

The READI network is the outgrowth of nearly 25 years of U.S. government research efforts to develop the capabilities and applications of GPS technology. The GPS satellite system was created by the Department of Defense for military and ultimately civil positioning needs. NASA leveraged this investment by supporting development of a global GPS signal receiving network to improve the accuracy and utility of GPS positioning information. Today that capability provides real-time, pinpoint positioning and timing for a wide variety of uses from agriculture to Earth exploration.

“Conventional seismic networks have consistently struggled to rapidly identify the true size of great earthquakes during the last decade,” said Timothy Melbourne, director of the Central Washington University’s Pacific Northwest Geodetic Array. “This GPS system is more likely to provide accurate and rapid estimates of the location and amount of fault slip to fire, utility, medical and other first-response teams.”

The GPS earthquake detection capability was first demonstrated by NASA-supported research on a major 2004 Sumatra quake conducted by Geoffrey Blewitt and colleagues at the University of Nevada in Reno.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA JPL image

NASA analysis: 11 trillion gallons to replenish California drought losses

NASA JPL image NASA satellite data reveal the severity of California’s drought on water resources across the state. This map shows the trend in water storage between September 2011 and September 2014. It will take about 11 tr...
 
 
NASA photograph by George Hale

NASA’s IceBridge Antarctic campaign wraps up

NASA photograph by George Hale A view from an IceBridge survey flight Nov. 3, 2014, showing a cloud’s shadow on crevassed Antarctic ice. NASA’s Operation IceBridge recently completed its 2014 Antarctic campaign, marking the...
 
 

NASA’s 2014 HS3 hurricane mission investigated four tropical cyclones

NASA photograph NASA’s Global Hawk takes off into the sunset after mission wrap-up at NASA Wallops and heads back to NASA Armstrong. NASA’s Hurricane and Severe Storms Sentinel, or HS3, mission investigated four tropical cyclones in the 2014 Atlantic Ocean hurricane season: Cristobal, Dolly, Edouard and Gonzalo. The storms affected land areas in the Atlantic...
 

 

NASA tests software that may help increase flight efficiency, decrease aircraft noise

NASA researchers Dec. 12 began flight tests of computer software that shows promise in improving flight efficiency and reducing environmental impacts of aircraft, especially on communities around airports. Known as ASTAR, or Airborne Spacing for Terminal Arrival Routes, the software is designed to give pilots specific speed information and guidance so that planes can be...
 
 
nasa-app-challenge

Help U.S. cope with climate change: Enter NASA-USGS data app challenge

NASA in partnership with the U.S. Geological Survey is offering more than $35,000 in prizes to citizen scientists for ideas that make use of climate data to address vulnerabilities faced by the United States in coping with clim...
 
 
dryden-social3

Event introduces attendees to NASA’s aviation contributions

  NASA is transforming aviation by reducing aircraft environmental impacts, enhancing safety and leading the way in revolutionary new technologies. Those are some of the key ideas from a two-day NASA Aeronautics Research M...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>