Tech

April 24, 2012

NASA tests GPS monitoring system for big U.S. earthquakes

The space-based technology that lets GPS-equipped motorists constantly update their precise location will undergo a major test of its ability to rapidly pinpoint the location and magnitude of strong earthquakes across the western United States.

Results from the new Real-time Earthquake Analysis for Disaster Mitigation Network soon could be used to assist prompt disaster response and more accurate tsunami warnings.

The new research network builds on decades of technology development supported by the National Science Foundation, the Department of Defense, NASA, and the U.S. Geological Survey. The network uses real-time GPS measurements from nearly 500 stations throughout California, Oregon and Washington. When a large earthquake is detected, GPS data are used to automatically calculate its vital characteristics including location, magnitude and details about the fault rupture.

“With the READI network we are enabling continued development of real-time GPS technologies to advance national and international early warning disaster systems,” said Craig Dobson, natural hazards program manager in the Earth Science Division at NASA Headquarters in Washington. “This prototype system is a significant step towards realizing the goal of providing Pacific basin-wide natural hazards capability around the Pacific ‘Ring of Fire.'”

Accurate and rapid identification of earthquakes of magnitude 6.0 and stronger is critical for disaster response and mitigation efforts, especially for tsunamis. Calculating the strength of a tsunami requires detailed knowledge of the size of the earthquake and associated ground movements. Acquiring this type of data for very large earthquakes is a challenge for traditional seismological instruments that measure ground shaking.

High-precision, second-by-second measurements of ground displacements using GPS have been shown to reduce the time needed to characterize large earthquakes and to increase the accuracy of subsequent tsunami predictions. After the capabilities of the network have been fully demonstrated, it is intended to be used by appropriate natural hazard monitoring agencies. USGS and the National Oceanic and Atmospheric Administration are responsible for detecting and issuing warnings on earthquakes and tsunamis, respectively.

“By using GPS to measure ground deformation from large earthquakes, we can reduce the time needed to locate and characterize the damage from large seismic events to several minutes,” said Yehuda Bock, director of Scripps Institution of Oceanography’s Orbit and Permanent Array Center in La Jolla, Calif. “We now are poised to fully test the prototype system this year.”

The READI network is a collaboration of many institutions including Scripps at the University of California in San Diego; Central Washington University in Ellensburg; the University of Nevada in Reno; California Institute of Technology/Jet Propulsion Laboratory in Pasadena; UNAVCO in Boulder, Colo.; and the University of California at Berkeley.

NASA, NSF, USGS, and other federal, state, and local partners support the GPS stations in the network, including the EarthScope Plate Boundary Observatory, the Pacific Northwest Geodetic Array, the Bay Area Regional Deformation Array and the California Real-Time Network.

“The relatively small investments in GPS-based natural hazards systems have revolutionized the way we view the Earth and allowed us to develop this prototype system with great potential benefits for the infrastructure and population in earthquake-prone states in the western United States,” said Frank Webb, Earth Science Advanced Mission Concepts program manager at JPL.

The READI network is the outgrowth of nearly 25 years of U.S. government research efforts to develop the capabilities and applications of GPS technology. The GPS satellite system was created by the Department of Defense for military and ultimately civil positioning needs. NASA leveraged this investment by supporting development of a global GPS signal receiving network to improve the accuracy and utility of GPS positioning information. Today that capability provides real-time, pinpoint positioning and timing for a wide variety of uses from agriculture to Earth exploration.

“Conventional seismic networks have consistently struggled to rapidly identify the true size of great earthquakes during the last decade,” said Timothy Melbourne, director of the Central Washington University’s Pacific Northwest Geodetic Array. “This GPS system is more likely to provide accurate and rapid estimates of the location and amount of fault slip to fire, utility, medical and other first-response teams.”

The GPS earthquake detection capability was first demonstrated by NASA-supported research on a major 2004 Sumatra quake conducted by Geoffrey Blewitt and colleagues at the University of Nevada in Reno.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines November 24, 2014

News: Hagel said to be stepping down as defense chief under pressure - Defense Secretary Chuck Hagel is stepping down under pressure, the first cabinet-level casualty of President Obama’s Democratic majority in the Senate and a beleaguered national security team that has struggled to stay ahead of an onslaught of global crises. Afghan mission for U.S....
 
 

News Briefs November 24, 2014

Fog forces five U.S. choppers to land in Polish field Officials say that that fog forced five U.S. Army helicopters to make an emergency landing in a Polish field and spend the night there, the second such incident since September. The U.S. Army said 15 soldiers were moving equipment to their base in Germany Nov....
 
 
Air Force photograph by Samuel King Jr.

Navy’s first F-35C squadron surpasses 1,000 flight hours

Air Force photograph by Samuel King Jr. An F-35C Lightning II aircraft piloted by Lt. Cmdr. Chris Tabert, assigned to Strike Fighter Squadron (VFA) 101, flies the squadron’s first local sortie. The F-35C is the carrier va...
 

 
boeing-SC-787

Boeing South Carolina begins final assembly of its first 787-9 Dreamliner

Boeing has started final assembly of the 787-9 Dreamliner at its South Carolina facility. The team began joining large fuselage sections of the newest 787 Nov. 22 on schedule, a proud milestone for the South Carolina team and a...
 
 
Lockheed Martin image

Ball Aerospace equips Orion mission with key avionics, antenna hardware

Lockheed Martin image Ball Aerospace & Technologies Corp. is providing the phased array antennas and flight test cameras to prime contractor Lockheed Martin for Orion’s Exploration Flight Test-1 (EFT-1), which is an u...
 
 

Salina, Kansas, recalls anniversary of shuttered base

It has been 50 years this month since the announcement that Schilling Air Force Base was closing rattled Salina residents. The Salina Journal, which carried news of the closure in its Nov. 19, 1964, editions, reported that the economic disaster then spared no part of the community – real estate, retail, civic involvement, church attendance,...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>