Tech

April 25, 2012

J-2X engine ready for second test series

NASA photograph
NASA Administrator Charles Bolden (right) takes an up-close look at the first development J-2X engine on the A-2 Test Stand at Stennis, where the engine is being prepared for a second round of testing. Pictured with Bolden is A-2 Test Stand Director Skip Roberts. The J-2X engine will provide upper-stage power for NASA's evolved Space Launch System, a new heavy-lift launch vehicle capable of missions to deep space. The J-2X is being developed for NASA by Pratt & Whitney Rocketdyne.

The next-generation engine that will help carry humans deeper into space than ever is back, bigger and better.

The J-2X engine is currently on the A-2 Test Stand at NASA’s Stennis Space Center in Mississippi for an extensive round of tests to build on last year’s successful test firings. The engine will provide upper-stage power for NASA’s evolved Space Launch System, a new heavy-lift rocket capable of missions to deep space.

“We’re making steady and tangible progress on our new heavy-lift rocket that will launch astronauts on journeys to destinations farther in our solar system,” said NASA Administrator Charles Bolden, who recently visited Stennis and saw the J-2X in its test stand. “As we continue test firings of the J-2X engine and a myriad of other work to open the next great chapter of exploration, we’re demonstrating our commitment right now to America’s continued leadership in space.”

The space agency conducted an initial round of sea-level tests on the first developmental engine last year. This second test series will simulate high-altitude conditions where the atmospheric pressure is low. The SLS will use J-2X engines on the second stage of flight after the first stage is jettisoned.

“The first round of testing helped us get to know the engine, how it operates and its basic performance characteristics,” said Tom Byrd, J-2X engine lead in the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Ala. “Now, we’re looking forward to testing J-2X in the SLS flight configuration, collecting nozzle data and continuing to learn about the performance of the engine itself.”

NASA has worked closely with the J-2X prime contractor, Pratt and Whitney Rocketdyne of Canoga Park, Calif., to prepare the J-2X engine, dubbed E10001 for its second round of tests.

The J-2X engine nozzle is different from the nozzle used on the space shuttle main engine for the last 30 years of space missions. While the space shuttle main engine nozzle was hydrogen cooled to save weight, the J-2X hydrogen-cooled nozzle is shorter and attached to a lightweight, passively cooled nozzle extension.

A total of 16 tests are scheduled, tentatively beginning this Wednesday. They are expected to conclude by the end of this year.

In its first round of testing, the J-2X engine reached 100 percent power in just four tests and achieved a full flight-duration firing of 500 seconds in its eighth test, faster than any other U.S. engine. The engine was fired a total of 10 times for a cumulative 1,040 seconds of testing various aspects of performance.

The J-2X is a redesign of the heritage J-2 engine that helped send astronauts to the moon during the Apollo Program in the 1960s and 1970s. In addition to testing the engine, NASA is conducting tests on the J-2X powerpack, which includes the gas generator, oxygen and fuel turbopumps, and related ducts and valves. Tests of the powerpack components are being conducted on the A-1 Test Stand at Stennis.

The J-2X is being developed for NASA by Pratt and Whitney Rocketdyne. It is the first new liquid oxygen and liquid hydrogen rocket engine developed in 40 years that will be rated to carry humans into space.

 




All of this week's top headlines to your email every Friday.


 
 

 

NASA tests software that may help increase flight efficiency, decrease aircraft noise

NASA researchers Dec. 12 began flight tests of computer software that shows promise in improving flight efficiency and reducing environmental impacts of aircraft, especially on communities around airports. Known as ASTAR, or Airborne Spacing for Terminal Arrival Routes, the software is designed to give pilots specific speed information and guidance so that planes can be...
 
 
nasa-app-challenge

Help U.S. cope with climate change: Enter NASA-USGS data app challenge

NASA in partnership with the U.S. Geological Survey is offering more than $35,000 in prizes to citizen scientists for ideas that make use of climate data to address vulnerabilities faced by the United States in coping with clim...
 
 
dryden-social3

Event introduces attendees to NASA’s aviation contributions

  NASA is transforming aviation by reducing aircraft environmental impacts, enhancing safety and leading the way in revolutionary new technologies. Those are some of the key ideas from a two-day NASA Aeronautics Research M...
 

 
KMel Robotics photograph

Researchers test insect-inspired robots

KMel Robotics photograph These nano-quads are the size that the U.S. Army Research Laboratory Micro-Autonomous Systems Technology consortium of researchers envision. The current state is about as compact as a microwave oven. &n...
 
 
NASA photograph

NASA teams with South Korean agency to further improve air traffic management

NASA photograph Jaiwon Shin, NASAĆ­s associate administrator for Aeronautics Research, and Jaeboong Lee, president of the Korea Agency for Infrastructure Technology Advancement, signed an agreement Nov. 17, 2014 in Seoul, South...
 
 

Air Force funds research on thermal management technology for fighter aircraft

Managing heat that is generated by electronic subsystems in next-generation aircraft is a vexing challenge for aerospace system designers. In the interest of meeting this challenge, the Air Force recently provided follow-on funding for a Small Business Innovation Research effort that is identifying improved methods for heat conduction and rejection from system electronics for advanced...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>