Tech

April 26, 2012

DARPA seeks non-thermal approaches to thin-film deposition

darpa-thin-film

When the Department of Defense wants to build a jet engine, it doesn’t put a team of engineers in a hangar with a block of metal and some chisels.

Jet engines are made up of individual components that are carefully assembled into a finished product that possesses the desired performance capabilities.

In the case of thin-film deposition – a process in which coatings with special properties are bonded to materials and parts to enhance performance – current science addresses the process as though it is attempting to build a jet from a block of metal, focusing on the whole and ignoring the parts. Like a jet engine, the thin-film deposition process could work better if it was addressed at the component level.

Thin-film deposition requires high levels of energy to achieve the individual chemical steps to deposit a coating on a substrate. Under the current state of practice, that necessary energy is generated by applying very high temperatures – more than 900 degrees Celsius in some cases – at the surface of the substrate as part of a chemical vapor deposition process. The problem with using the thermal energy hammer is that the minimum required processing temperatures exceed the maximum temperatures that many substrates of interest to DOD can withstand. As a result, a wide range of capabilities remain out of reach.

DARPA created the Local Control of Materials Synthesis program to overcome the reliance on high thermal energy input by addressing the process of thin-film deposition at the component level in areas such as reactant flux, surface mobility, reaction energy, nucleation and by-product removal, among others. In so doing, LoCo will attempt to create new, low-temperature deposition processes and a new range of coating-substrate pairings for use in DOD technologies.

“What really matters in thin-film deposition is energy, not heat,” said DARPA program manager Brian Holloway. “If we break down the thin-film deposition process into components, we should be able to achieve better results by looking at each piece individually and then merging those solutions into a new low-temperature process. It’s going to be researchers in specialties like plasma chemistry, photophysics, surface acoustic spectroscopy and solid-state physics who make it possible. DARPA seeks scientists who can contribute pieces of the puzzle so that the LoCo team can put them together.”

Breakthroughs in thin-film deposition could enhance performance and enable new capabilities across a range of DOD technologies, impacting areas as diverse as artificial arteries, corrosion-resistant paint and steel combinations, erosion-resistant rotor blades, photovoltaics and long-wavelength infrared missile domes, among others.

As a second focus area, the LoCo program seeks performers to evaluate the cost and performance impacts of coating application to existing DOD parts and systems. Through these assessments, DARPA hopes to identify a specific piece of equipment that would benefit from a novel coating to use as a test bed for any new thin-film deposition process. Through this parallel effort, LoCo intends to move from initial research to practical application within three years.

To answer questions regarding the LoCo program, DARPA will hold a Proposers’ Day workshop May 9, 2012.

This live workshop and simultaneous webcast will introduce interested communities to the effort, explain the mechanics of a DARPA program and address questions about proposals, participation and eligibility. The meeting is in support of the forthcoming Local Control of Materials Synthesis Broad Agency Announcement that will formally solicit proposals. More information on the Proposers’ Day is available at: http://go.usa.gov/ypt. The BAA will be announced on the Federal Business Opportunities website (www.fbo.gov).

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by Carla Thomas

NASA, FAA, industry conduct initial sense-and-avoid test

NASA photograph by Carla Thomas NASA is using the remotely piloted Ikhana in the UAS-NAS project, one of the nation’s most important research efforts for improving safety and reducing technical barriers and operational challe...
 
 
nasa-spinoff

NASA Spinoff 2015 features space technology making life better on Earth

https://www.youtube.com/watch?feature=player_embedded&v=oWCWwEv_LcI&x-yt-ts=1421782837&x-yt-cl=84359240 NASA technologies are being used to locate underground water in some of the driest places on the Earth, buil...
 
 

NASA, Microsoft collaboration will allow scientists to ‘work on Mars’

NASA and Microsoft have teamed up to develop software called OnSight, a new technology that will enable scientists to work virtually on Mars using wearable technology called Microsoft HoloLens. Developed by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., OnSight will give scientists a means to plan and, along with the Mars Curiosity rover, conduct science...
 

 
NASA JPL image

NASA analysis: 11 trillion gallons to replenish California drought losses

NASA JPL image NASA satellite data reveal the severity of California’s drought on water resources across the state. This map shows the trend in water storage between September 2011 and September 2014. It will take about 11 tr...
 
 
NASA photograph by George Hale

NASA’s IceBridge Antarctic campaign wraps up

NASA photograph by George Hale A view from an IceBridge survey flight Nov. 3, 2014, showing a cloud’s shadow on crevassed Antarctic ice. NASA’s Operation IceBridge recently completed its 2014 Antarctic campaign, marking the...
 
 

NASA’s 2014 HS3 hurricane mission investigated four tropical cyclones

NASA photograph NASA’s Global Hawk takes off into the sunset after mission wrap-up at NASA Wallops and heads back to NASA Armstrong. NASA’s Hurricane and Severe Storms Sentinel, or HS3, mission investigated four tropical cyclones in the 2014 Atlantic Ocean hurricane season: Cristobal, Dolly, Edouard and Gonzalo. The storms affected land areas in the Atlantic...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>