Tech

April 26, 2012

DARPA seeks non-thermal approaches to thin-film deposition

darpa-thin-film

When the Department of Defense wants to build a jet engine, it doesn’t put a team of engineers in a hangar with a block of metal and some chisels.

Jet engines are made up of individual components that are carefully assembled into a finished product that possesses the desired performance capabilities.

In the case of thin-film deposition – a process in which coatings with special properties are bonded to materials and parts to enhance performance – current science addresses the process as though it is attempting to build a jet from a block of metal, focusing on the whole and ignoring the parts. Like a jet engine, the thin-film deposition process could work better if it was addressed at the component level.

Thin-film deposition requires high levels of energy to achieve the individual chemical steps to deposit a coating on a substrate. Under the current state of practice, that necessary energy is generated by applying very high temperatures – more than 900 degrees Celsius in some cases – at the surface of the substrate as part of a chemical vapor deposition process. The problem with using the thermal energy hammer is that the minimum required processing temperatures exceed the maximum temperatures that many substrates of interest to DOD can withstand. As a result, a wide range of capabilities remain out of reach.

DARPA created the Local Control of Materials Synthesis program to overcome the reliance on high thermal energy input by addressing the process of thin-film deposition at the component level in areas such as reactant flux, surface mobility, reaction energy, nucleation and by-product removal, among others. In so doing, LoCo will attempt to create new, low-temperature deposition processes and a new range of coating-substrate pairings for use in DOD technologies.

“What really matters in thin-film deposition is energy, not heat,” said DARPA program manager Brian Holloway. “If we break down the thin-film deposition process into components, we should be able to achieve better results by looking at each piece individually and then merging those solutions into a new low-temperature process. It’s going to be researchers in specialties like plasma chemistry, photophysics, surface acoustic spectroscopy and solid-state physics who make it possible. DARPA seeks scientists who can contribute pieces of the puzzle so that the LoCo team can put them together.”

Breakthroughs in thin-film deposition could enhance performance and enable new capabilities across a range of DOD technologies, impacting areas as diverse as artificial arteries, corrosion-resistant paint and steel combinations, erosion-resistant rotor blades, photovoltaics and long-wavelength infrared missile domes, among others.

As a second focus area, the LoCo program seeks performers to evaluate the cost and performance impacts of coating application to existing DOD parts and systems. Through these assessments, DARPA hopes to identify a specific piece of equipment that would benefit from a novel coating to use as a test bed for any new thin-film deposition process. Through this parallel effort, LoCo intends to move from initial research to practical application within three years.

To answer questions regarding the LoCo program, DARPA will hold a Proposers’ Day workshop May 9, 2012.

This live workshop and simultaneous webcast will introduce interested communities to the effort, explain the mechanics of a DARPA program and address questions about proposals, participation and eligibility. The meeting is in support of the forthcoming Local Control of Materials Synthesis Broad Agency Announcement that will formally solicit proposals. More information on the Proposers’ Day is available at: http://go.usa.gov/ypt. The BAA will be announced on the Federal Business Opportunities website (www.fbo.gov).

 




All of this week's top headlines to your email every Friday.


 
 

 
nasa-flying-lab

NASA’s flying laboratories study our world

Throughout the remainder of 2014, NASA is flying a series of airborne research campaigns from the North Pole to the South Pole and many points in between ñ to take a closer look at U.S. air quality, hurricanes in the Atlantic ...
 
 

NASA selects proposals to increase STEM education at community, technical colleges

NASA’s Office of Education will award more than $17.3 million through the National Space Grant and Fellowship Program to increase student and faculty engagement in science, technology, engineering and mathematics at community colleges and technical schools across the United States. Each award has a two-year performance period and a maximum value of $500,000. The 35...
 
 
Courtesy photograph

Space technology experiments tested in microgravity flight

Courtesy photograph University of Central Florida students and their principal investigator observe their experiment as it reacts to the microgravity environment on NASA’s C-9 reduced-gravity experiments aircraft. NASA...
 

 
NASA photograph by Tom Tschida

Seeing double: Experimental glider, rocket undergo fit checks

NASA photograph by Tom Tschida NASA intern Erik Rossi De La Fuente (upper left) admires the one-third scale, twin-fuselage sailplane concept demonstrator that will carry and launch the Whittinghill Aerospace Mini Sprite rocket....
 
 
Image courtesy of NASA/JPL/Corby Waste

NASA selects U.S. small business technology transfer projects for further development

Image courtesy of NASA/JPL/Corby Waste An artist’s rendition of the 2007 Phoenix Mars probe during landing depicts dust particles stirred up from thrusters. CFD Research Corporation, in conjunction with the University of ...
 
 
University of Rhode Island photograph by Tom Glennon

NASA kicks off field campaign to probe ocean ecology, carbon cycle

University of Rhode Island photograph by Tom Glennon The Research Vessel Endeavor is the floating laboratory that scientists will use for the ocean-going portion of the SABOR field campaign this summer. NASA embarks this week o...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>