Space

April 30, 2012

NASA’s Cassini finds Saturn’s moon Phoebe has planet-like qualities

Data from NASA’s Cassini mission reveal Saturn’s moon Phoebe has more planet-like qualities than previously thought.

Scientists had their first close-up look at Phoebe when Cassini began exploring the Saturn system in 2004.

Using data from multiple spacecraft instruments and a computer model of the moon’s chemistry, geophysics and geology, scientists found Phoebe was a so-called planetesimal, or remnant planetary building block. The findings appear in the April issue of the Journal Icarus.

“Unlike primitive bodies such as comets, Phoebe appears to have actively evolved for a time before it stalled out,” said Julie Castillo-Rogez, a planetary scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Objects like Phoebe are thought to have condensed very quickly. Hence, they represent building blocks of planets. They give scientists clues about what conditions were like around the time of the birth of giant planets and their moons”

Cassini images suggest Phoebe originated in the far-off Kuiper Belt, the region of ancient, icy, rocky bodies beyond Neptune’s orbit. Data show Phoebe was spherical and hot early in its history, and has denser rock-rich material concentrated near its center. Its average density is about the same as Pluto, another object in the Kuiper Belt. Phoebe likely was captured by Saturn’s gravity when it somehow got close to the giant planet.

Saturn is surrounded by a cloud of irregular moons that circle the planet in orbits tilted from Saturn’s orbit around the sun, the so-called equatorial plane. Phoebe is the largest of these irregular moons and also has the distinction of orbiting backward in relation to the other moons. By comparison, Saturn’s large moons appear to have formed from gas and dust around the planet’s equatorial plane and orbit in that same plane.

“By combining Cassini data with modeling techniques previously applied to other solar system bodies, we’ve been able to go back in time and clarify why Phoebe is so different from the rest of the Saturn system,” said Jonathan Lunine, a co-author on the study and a Cassini team member at Cornell University.

Analyses suggest that Phoebe was born within the first 3 million years of the birth of the solar system, which occurred 4.5 billion years ago. The moon originally may have been porous but appears to have collapsed in on itself as it warmed up. Phoebe developed a density 40 percent higher than the average inner Saturnian moon.

Objects of Phoebe’s size have long been thought to form as potato-shaped bodies and remain that way over their lifetimes. If such an object formed early enough in the solar system’s history, it could have harbored the kinds of radioactive material that would produce substantial heat over a short timescale. This would warm the interior and reshape the moon.

“From Cassini images and models, we were able to see that Phoebe started with a nearly spherical shape, rather than an irregular shape later smoothed into a sphere by impacts,” said co-author Peter Thomas, a Cassini team member at Cornell.

Phoebe likely stayed warm for tens of millions of years before freezing up. The study suggests the heat also would have enabled the moon to host liquid water at one time. This could explain the signature of water-rich material on Phoebe’s surface previously detected by Cassini.

The new study also is consistent with the idea that several hundred million years after Phoebe cooled, the moon drifted toward the inner solar system in a solar-system-wide rearrangement. Phoebe was large enough to survive this turbulence.

More than 60 moons are known to orbit Saturn, varying drastically in shape, size, surface age and origin. Scientists using both ground-based observatories and Cassini’s cameras continue to search for others.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL manages the mission for the agency’s Science Mission Directorate in Washington.

 




All of this week's top headlines to your email every Friday.


 
 

 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 

News Briefs February 27, 2015

Ukraine will start pulling back heavy weapons in the east Ukraine’s military says it will start pulling back its heavy weapons from the front line with Russian-backed separatists as required under a cease-fire agreement. The Defense Ministry said in a statement Feb. 26 that it reserved the right to revise its withdrawal plans in the...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 

 
navy-china

USS Fort Worth conducts CUES with Chinese Navy

The littoral combat ship USS Fort Worth (LCS 3) practiced the Code for Unplanned Encounters at Sea (CUES) with the People’s Liberation Army-Navy Jiangkai II frigate Hengshui (FFG 572) Feb. 23 enhancing the professional ma...
 
 

AEGIS tracks, simulates engagement of three short-range ballistic missiles

The Missile Defense Agency and sailors aboard the guided-missile destroyers USS Carney (DDG 64), USS Gonzalez (DDG 66), and USS Barry (DDG 52) successfully completed a flight test involving the Aegis Ballistic Missile Defense weapon system. At approximately 2:30 a.m., EST, Feb. 26, three short-range ballistic missile targets were launched near simultaneously from NASA’s Wallops...
 
 

DOD seeks novel ideas to shape its technological future

The Defense Department is seeking novel ideas to shape its future, and officials are looking to industry, small business, academia, start-ups, the public – anyone, really – to boost its ability to prevail against adversaries whose access to technology grows daily. The program, called the Long-Range Research and Development Plan, or LRRDP, began with an...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>