Tech

May 1, 2012

AFRL design challenge encourages engineering innovation

by Laura Dempsey
Wright-Patterson AFB, Ohio

The Air Force Research Laboratory played host, mentor, cheerleader and critic to teams from all three service academies and 17 universities at the annual AFRL Design Challenge.

The challenge took place April 16-20 at Wright State University’s Calamityville, a National Center for Medical Readiness training facility in Fairborn, Ohio.

AFRL collected input from the Lab’s most important customer – the war fighter – in settling on a problem with real-world application and rapid transition potential. In August 2011, teams were given the war fighter-focused engineering design challenge, $20,000, and nine months to come up with a demonstrable solution.

“It’s a total win-win”, said Dr. Alok Das, AFRL Senior Scientist for Design Innovation, the event’s sponsor. “AFRL gets the benefit of some very creative ideas that address a real military need, while the students get an opportunity to work under real-world conditions. They gain experience in rapid prototyping and engineering a solution to a customer need, knowing that their design could truly make a difference.”

This year’s challenge was to design a system allowing a team of four Special Operations Force personnel to scale buildings or mountain faces under a variety of conditions. The teams were given system parameters – for instance, a system maximum weight of 20 pounds, with a goal of 5 pounds. Teams were judged on both objective measures (weight, size, velocity achieved) and subjective measures (ease of operation, useability, stealth, innovation and elegance).

April 16, the three service academies – The United States Air Force Academy, The United States Naval Academy, and West Point – were pitted against each other in the first phase of the Design Challenge, the Service Academy Challenge. For the cadets and midshipmen, most of whom are senior engineering students, the design challenge constituted their Capstone Project. There was a grade involved, but paramount in the students’ minds was snagging the traveling trophy to take home to their school.

The second phase, the Design Challenge for the Universities, was conducted April 17-20. Team were made up of seniors who selected this project for their Capstone Engineering requirement. These students were motivated by the class grade and bragging rights for the winner, but also by the potential for a $100,000 grant to further develop their innovative idea for the Air Force.

During the competition, the teams briefed judges, safety officers and Pararescue Jumpers from the 123rd Special Tactics Squadron Air National Guard Unit in Louisville and from Air Force Special Operations Command (Hurlburt Field) on their process and final design. They were quizzed and congratulated, then grilled by the PJs, who were charged with physically testing the teams’ systems on the 90-foot high, sheer concrete face of an abandoned cement silo at Calamityville.

“I was impressed by the enthusiasm of these young engineers,” said Lt Col David Shahady, lead judge. “These student showed remarkable creativity and accomplished an incredible amount of practical engineering under a very demanding schedule.”

After a long day of testing, failure, simulations, restarts and successes, the U.S. Air Force Academy team was deemed to have the most promising design, beating the Navy and Army academy teams. A key element of their solution was a gun-launched device that would reach the top of the climbing surface and explosively set a concrete anchor for the lead rope. They also developed a carbon fiber ladder, which could be used in leap-frog fashion with periodically placed wall anchors to allow a climber to scale the wall.

Choosing the winner from among the University participants was difficult, as there were several very innovative prototypes successfully demonstrated. In the end, Utah State University’s concept won the day. The USU team’s design used vacuum suction pads to enable two climbers to quickly scale the wall and then drop a rope for the remaining two climbers to ascend with a powered winch won the day. The second place winner, University of Minnesota Duluth, employed an innovative solution that included a vacuum-operated wall climbing robot that set an anchor at the top of the wall.

“The breadth of solutions was impressive,” noted Devon Parker, who coordinated the competition with Lt Col Brett Bolan. “These students overcame some significant engineering challenges to create workable devices.”

In addition to a trophy for the winning teams, all participants received a specially designed University and Service Academy Design Challenge coin from Major General William N. McCasland, AFRL Commander, with sincere appreciation for their efforts. AFRL will glean the most successful elements of these concepts and work to transition a field-testable prototype over the next several months. At the same time, AFRL will start gearing up for next year’s challenge with a new problem to be solved by the next class of young engineers.

 




All of this week's top headlines to your email every Friday.


 
 

 

ONR features technology for Marines of future

From virtual training to laser weapons, the Office of Naval Research is showcasing a range of technologies at Modern Day Marine exposition Sept. 23-25 that will prepare Marines as they continue to face an increasingly complex security landscape. ONR program officers will be in booth no. 2305 during the event, held at Marine Corps Base...
 
 
University of Alaska-Fairbanks photograph by Chris Larsen

NASA airborne campaigns focus on climate impacts in Arctic

University of Alaska-Fairbanks photograph by Chris Larsen Changes in more than 130 Alaskan glaciers are being surveyed by scientists at the University of Alaska-Fairbanks in a DHC-3 Otter as part of NASA’s multi-year Oper...
 
 
NASA/SSAI photograph by Edward Winstead

ACCESS II confirms jet biofuel burns cleaner

NASA/ORAU photograph by Richard Moore NASA’s DC-8 research aircraft leads one of the ACCESS II sampler aircraft across the early morning California sky.   Flying high above the California desert, NASA researchers rec...
 

 

Sparks fly as NASA pushes limits of 3-D printing technology

NASA has successfully tested the most complex rocket engine parts ever designed by the agency and printed with additive manufacturing, or 3-D printing, on a test stand at NASA’s Marshall Space Flight Center in Huntsville, Ala. NASA engineers pushed the limits of technology by designing a rocket engine injector – a highly complex part that...
 
 
NASA photograph by David Alexander

NASA MQ-9 remotely piloted aircraft completes visual, radar mission in Hawaii

NASA photograph “Ikhana,” NASA’s MQ-9 remotely piloted research aircraft, carries a maritime radar in a specialized centerline pod during a flight to check out systems prior to the aircraft’s deployment ...
 
 
NASA photograph by Tom Tschida

NASA Armstrong’s space shuttle Mate-Demate Device coming down

NASA photograph by Tom Tschida The space shuttle Mate-Demate Device that stood as an iconic symbol of NASA’s now-concluded Space Shuttle Program at NASA Armstrong Flight Research Center for 38 years is being dismantled af...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>