Tech

May 1, 2012

ONR-sponsored Flexrotor program takes off for next phase

by Katherine H. Crawford
Arlington, Va.

The Office of Naval Research-sponsored Flexrotor vertical takeoff and landing unmanned aerial vehicle entered the next development phase in delivering improved maritime surveillance capability April 30.

The contract is awarded for the flight controls component.

During this phase, Aerovel Corp. will advance Flexrotor’s capability with an upgraded propulsion system to transition from vertical to cruising flight, and to land in crosswinds and high winds. The aircraft’s first major milestone was in August 2011, when it successfully transitioned from horizontal to vertical flight and back again.

The small UAV features a unique design. It has an oversized propeller with helicopter-like controls for vertical takeoff and landing, and the wings of a conventional aircraft. The goal is that it will take off vertically, cruise efficiently horizontally and then land vertically.

“With Flexrotor, the two biggest benefits to Sailors and Marines would be the ability to do extended maritime surveillance from a ship, and to do so with a small footprint,” said John Kinzer, ONR program officer for Air Vehicle Technology.

Taking up less than one-half the space needed by other UAVs, Flexrotor would give Sailors compact, ship-launched, eye-in-the-sky capability. Additionally, it could stay airborne for a longer period of time. Thus, Flexrotor could help meet the Navy’s perpetual need for more and better maritime surveillance.

A vertical takeoff/landing craft requires a complex propulsion and flight control system. The propeller needs to be big enough to provide sufficient lift to take off vertically, yet small enough to be efficient while in horizontal flight. The flight controls must provide powerful and precise control in vertical takeoffs and landings, and efficient, low-drag control in forward flight. Perfecting both the rotor and other flight capabilities requires a constant balancing act among power, efficiency and weight, and this is what Tadd McGeer, Flexrotor’s inventor, is working out during phase II.

Since test flights to date have occurred with light winds, Aerovel will begin testing in windy conditions, gradually increasing the aircraft’s operating envelope.

Another aspect of the program, sponsored by the Naval Air Warfare Center Aircraft Division, is to develop an autonomous servicing capability. Aerovel is creating an Automatic Servicing Platform that would serve as launch and landing pad, as well as maintenance bay. This could be useful when deploying the Flexrotor to remote areas, as the aircraft could use this all-in-one hub without needing human assistance.

Kinzer said the platform could be beneficial for a special operations application of remotely siting a UAV.

“[The special ops personnel] like the idea of not exposing where they are when they need to launch and recover one,” Kinzer said. “They could put it on a mountaintop somewhere and just leave it to do surveillance.”

There are also potential applications to Arctic surveillance and weather reporting for the Navy and other organizations, such as National Oceanic and Atmospheric Administration.

ONR provides the science and technology necessary to maintain the Navy and Marine Corps’ technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 30 countries, 1,035 institutions of higher learning and more than 900 industry partners. ONR employs approximately 1,065 people, comprising uniformed, civilian and contract personnel, with additional employees at the Naval Research Lab in Washington, D.C.

 

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA JPL image

NASA analysis: 11 trillion gallons to replenish California drought losses

NASA JPL image NASA satellite data reveal the severity of California’s drought on water resources across the state. This map shows the trend in water storage between September 2011 and September 2014. It will take about 11 tr...
 
 
NASA photograph by George Hale

NASA’s IceBridge Antarctic campaign wraps up

NASA photograph by George Hale A view from an IceBridge survey flight Nov. 3, 2014, showing a cloud’s shadow on crevassed Antarctic ice. NASA’s Operation IceBridge recently completed its 2014 Antarctic campaign, marking the...
 
 

NASA’s 2014 HS3 hurricane mission investigated four tropical cyclones

NASA photograph NASA’s Global Hawk takes off into the sunset after mission wrap-up at NASA Wallops and heads back to NASA Armstrong. NASA’s Hurricane and Severe Storms Sentinel, or HS3, mission investigated four tropical cyclones in the 2014 Atlantic Ocean hurricane season: Cristobal, Dolly, Edouard and Gonzalo. The storms affected land areas in the Atlantic...
 

 

NASA tests software that may help increase flight efficiency, decrease aircraft noise

NASA researchers Dec. 12 began flight tests of computer software that shows promise in improving flight efficiency and reducing environmental impacts of aircraft, especially on communities around airports. Known as ASTAR, or Airborne Spacing for Terminal Arrival Routes, the software is designed to give pilots specific speed information and guidance so that planes can be...
 
 
nasa-app-challenge

Help U.S. cope with climate change: Enter NASA-USGS data app challenge

NASA in partnership with the U.S. Geological Survey is offering more than $35,000 in prizes to citizen scientists for ideas that make use of climate data to address vulnerabilities faced by the United States in coping with clim...
 
 
dryden-social3

Event introduces attendees to NASA’s aviation contributions

  NASA is transforming aviation by reducing aircraft environmental impacts, enhancing safety and leading the way in revolutionary new technologies. Those are some of the key ideas from a two-day NASA Aeronautics Research M...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>