Business

May 2, 2012

Boeing designs advanced technology winglet for 737 MAX

Boeing image
An artist's rendering of a 737 MAX 9 with new Advanced Technology winglets. The 737 MAX rendering is updated to reflect design decisions made since the launch of the program in August 2011.

Boeing today May 2 a new winglet design concept for the 737 MAX. The new Advanced Technology winglet will provide MAX customers with up to an additional 1.5 percent fuel-burn improvement, depending on range, on top of the 10-12 percent improvement already offered on the new-engine variant.

“The Advanced Technology winglet demonstrates Boeing’s continued drive to improve fuel burn and the corresponding value to the customer. With this technology and others being built into the MAX, we will extend our leadership,” said Jim Albaugh, president and CEO, Boeing Commercial Airplanes. “Incorporating this advanced technology into the 737 MAX design will give our customers even more advantage in today’s volatile fuel price environment.”

Compared to today’s wingtip technology, which provides up to a 4 percent fuel-burn advantage at long ranges, the Advanced Technology winglet provides a total fuel-burn improvement of up to 5.5 percent on the same long routes.

“The concept is more efficient than any other wingtip device in the single-aisle market because the effective wing span increase is uniquely balanced between the upper and lower parts of the winglet,” said Michael Teal, chief project engineer, 737 MAX.

Boeing aerodynamicists used advanced computational fluid dynamics to combine rake tip technology with a dual feather winglet concept into one advanced treatment for the wings of the 737 MAX. The Advanced Technology winglet fits within today’s airport gate constraints while providing more effective span thereby reducing drag. Ongoing 737 MAX testing in the wind tunnel validated the new concept on the airplane.

The super-efficient design has been incorporated into the 737 MAX design and production system plans. “We have assessed the risk and understand how to leverage this new technology on the MAX within our current schedule,” said Teal. “This puts us on track to deliver substantial additional fuel savings to our customers in 2017.” Airlines operating the 737 MAX now will gain an 18 percent fuel-burn per-seat improvement over today’s A320. Depending on the range of the mission, MAX operators will realize even more savings.

“Adding the Advanced Technology winglet to the 737 MAX is consistent with our demonstrated performance on delivering increasing value to our customers, on time, throughout the life of the 737 program,” said Beverly Wyse, vice president and general manger, 737 program.

To date, the 737 MAX has more than 1,000 orders and commitments from 16 customers worldwide.

 




All of this week's top headlines to your email every Friday.


 
 

 

Northrop Grumman sets new greenhouse gas emission reduction goal of 30 percent by 2020

Northrop Grumman announced April 22 its commitment to reduce greenhouse gas emissions by 30 percent from 2010 levels by 2020, as part of its commemoration of Earth Day.   “Northrop Grumman is dedicated to top performance in environmental sustainability,” said Wes Bush, chairman, chief executive officer and president. “This new goal sets the bar significantly...
 
 

Lockheed Martin demonstrates enhanced ground control system, software for small UAV

Lockheed Martin’s Group 1 family of unmanned aircraft systems is migrating to enhanced automation capabilities using its KestrelĂ´ “Fly Light” flight control systems and industry-leading mobile Ground Control Station software. The increased automation allows operators to focus on executing the mission, rather than flying various aircraft. Earlier this year, Lockheed MartinR...
 
 

U.S. Navy awards General Dynamics $33 million to operate, maintain military sealift ships

The U.S. Navy has awarded General Dynamics American Overseas Marine LLC a $32.7 million contract modification to operate and maintain seven large, medium-speed, roll-on / roll-off ships for the Military Sealift Command. AMSEA is a wholly owned subsidiary of General Dynamics. Under the terms of the modification, AMSEA will provide services including crewing, engineering, maintenance,...
 

 

US Navy deploys Standard Missile-3 Block IB for first time

In partnership with the Missile Defense Agency, the U.S. Navy deployed the second-generation Standard Missile-3 Block IB made by Raytheon for the first time, initiating the second phase of the Phased Adaptive Approach. “The SM-3 Block IB’s completion of initial operational testing last year set the stage for a rapid deployment to theater,” said Dr....
 
 

International customer signs agreement for Raytheon’s TOW missiles

An international customer signed an agreement with the U.S. government for a foreign military sale of tube-launched, optically tracked, wireless-guided (TOW) missiles to be supplied by Raytheon in a deal valued at approximately $750 million. Raytheon plans to deliver nearly 14,000 TOW missiles to the customer over a three-year period beginning in 2015. A resulting...
 
 

General Dynamics opens new radio testing lab for MUOS satellite-ground station communications

General Dynamics C4 Systems has opened the MUOS Radio Testing Lab at its Scottsdale, Ariz., location. The U.S. Navy-approved laboratory is one of two that supports testing for radio-terminals intending to connect with the MUOS space-ground network. The lab is equipped with hardware and software that simulates the radio’s connectivity with the MUOS ground network....
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>