Space

May 9, 2012

Overfed black holes shut down galactic star making

The Herschel Space Observatory has shown galaxies with the most powerful, active black holes at their cores produce fewer stars than galaxies with less active black holes.

The results are the first to demonstrate black holes suppressed galactic star formation when the universe was less than half its current age.

Herschel is a European Space Agency-led mission with important NASA contributions.

“We want to know how star formation and black hole activity are linked,” said Mathew Page of University College London’s Mullard Space Science Laboratory in the United Kingdom and lead author of the Nature paper describing these findings. “The two processes increase together up to a point, but the most energetic black holes appear to turn off star formation.”

Supermassive black holes, weighing as much as millions of suns, are believed to reside in the hearts of all large galaxies. When gas falls upon these monsters, the material is accelerated and heated around the black hole, releasing great torrents of energy. Earlier in the history of the universe, these giant, luminous black holes, called active galactic nuclei, were often much brighter and more energetic. Star formation was also livelier back then.

Studies of nearby galaxies suggest active black holes can squash star formation. The revved-up, central black holes likely heat up and disperse the galactic reservoirs of cold gas needed to create new stars. These studies have only provided “snapshots” in time, however, leaving the overall relationship of active galactic nuclei and star formation unclear, especially over the cosmic history of galaxy formation.

“To understand how active galactic nuclei affect star formation over the history of the universe, we investigated a time when star formation was most vigorous, between eight and 12 billion years ago,” said co-author James Bock, a senior research scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and co-coordinator of the Herschel Multi-tiered Extragalactic Survey. “At that epoch, galaxies were forming stars 10 times more rapidly than they are today on average. Many of these galaxies are incredibly luminous, more than 1,000 times brighter than our Milky Way.”

For the new study, Page and colleagues used Herschel data that probed 65 galaxies at wavelengths equivalent to the thickness of several sheets of office paper, a region of the light spectrum known as the far-infrared. These wavelengths reveal the rate of star formation, because most of the energy released by developing stars heats surrounding dust, which then re-radiates starlight out in far-infrared wavelengths.

The researchers compared their infrared readings with X-rays streaming from the active central black holes in the survey’s galaxies, measured by NASA’s Chandra X-ray Observatory. At lower intensities, the black holes’ brightness and star formation increased in sync. However, star formation dropped off in galaxies with the most energetic central black holes. Astronomers think inflows of gas fuel new stars and supermassive black holes. Feed a black hole too much, however, and it starts spewing radiation into the galaxy that prevents raw material from coalescing into new stars.

“Now that we see the relationship between active supermassive black holes and star formation, we want to know more about how this process works,” said Bill Danchi, Herschel program scientist at NASA Headquarters in Washington. “Does star formation get disrupted from the beginning with the formation of the brightest galaxies of this type, or do all active black holes eventually shut off star formation, and energetic ones do this more quickly than less active ones?”

Herschel is a European Space Agency cornerstone mission, with science instruments provided by consortia of European institutes and important participation by NASA. NASA’s Herschel Project Office is based at JPL. JPL contributed mission-enabling technology for two of Herschel’s three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at Caltech, supports the United States astronomical community. Caltech manages JPL for NASA.

 

For NASA’S Herschel website, visit http://www.nasa.gov/herschel.

 

For ESA’S Herschel website, visit http://www.esa.int/SPECIALS/Herschel/index.html.

 




All of this week's top headlines to your email every Friday.


 
 

 
ball-satelilte

Ball Aerospace integrates two of five instruments for JPSS-1

Two of the five instruments scheduled to fly on the nation’s next polar-orbiting weather satellite, NOAA’s Joint Polar Satellite System -1, have been integrated to the spacecraft bus by prime contractor Ball Aerospa...
 
 
NASA/JPL photograph

NASA’s Dawn spacecraft captures best-ever view of dwarf planet

Zoomed out – PIA19173 Ceres appears sharper than ever at 43 pixels across, a higher resolution than images of Ceres taken by the NASA’s Hubble Space Telescope in 2003 and 2004. NASA’s Dawn spacecraft has retur...
 
 
ATK

ATK completes installation of world’s largest solid rocket motor for ground test

ATK The first qualification motor for NASA’s Space Launch Systems booster is installed in ATK’s test stand in Utah – ready for a March 11 static-fire test. NASA and ATK have completed installing the first Spac...
 

 
ULA photograph

Third Lockheed Martin-built MUOS satellite launched, responding to commands

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Complex 41 at...
 
 
ULA photograph

ULA successfully launches Navy’s Mobile User Objective System-3

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System (MUOS) satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Comple...
 
 

Aerojet Rocketdyne Propulsion supports launch, flight of third MUOS satellite

Aerojet Rocketdyne played a critical role in successfully placing the third of five planned Mobile User Objective System (MUOS-3) satellites, designed and built by Lockheed Martin, into orbit for the U.S. Navy. The mission was launched from Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V rocket, with five Aerojet...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>