Tech

May 10, 2012

Army scientists explore wireless power transfer

Tags:
by Bindu Nair
Army News

Army Science and Technology has demonstrated wireless power transfer over 4-5 inches from helmet to vest.

The American soldier is equipped with more capabilities than ever before. These capabilities come in the form of new and more powerful devices that translate to a need for more power.

Currently, power is supplied to the dismounted Soldier through a collection of batteries, many of them rechargeable. A focus of Army Science and Technology is to figure out how to power the soldier, and to enable all of his/her new capabilities, without increasing (and ideally decreasing) his/her physical load.

In order to accomplish this imperative, the U.S. Army is exploring a variety of different technologies and concepts. One exciting technology that opens up different concepts of powering the soldier is the wireless transfer of power. The U.S. Army is allocating $5-$6 million to advance these technologies.

Wireless power could eliminate the need for bulky cables, especially between the Soldier’s helmet and vest (where centralized power sources might reside). Wireless power also allows for the recharging of Soldier gear whenever the Soldier enters a “recharging zone,” to include a vehicle, certain areas within a forward operating base, etc.

The U.S. Army funds the Institute for Soldier Nanotechnology,or ISN, at the Massachusetts Institute of Technology, known as MIT, in Cambridge, Mass. One of the many discoveries at the ISN is the invention and development of strongly coupled magnetic resonators that can transfer electrical power over (relatively) large distances.

Scientists and engineers at the U.S. Army’s Natick Soldier Research Development and Engineering Center, or NSRDEC, in Natick, Mass., have picked up this concept and worked with the company founded by ISN technology developers, as well as its competitors, to design systems that can wirelessly transfer power between the soldier helmet and the soldier vest.

Current capabilities allow for using a soldier battery (Li-145) on the vest or torso to transmit ~5W of power to a helmet receiver at about 50 percent efficiency. Current programs are in place to increase that efficiency. As might be expected, the shorter the distance required for power transfer, the more efficient the transfer process.

The U.S. Army is also leveraging work performed by the Defense Advanced Research Projects Agency. One effort of note explores the simultaneous wireless recharging of multiple items. The U.S. Army’s Tank and Automotive Research Development and Engineering Center, known as TARDEC, in Warren, Mich., and Communications Electronics Research Development and Engineering Center, or CERDEC, in Aberdeen, Md., are both expanding on this (and alternative) technologies to increase the efficiency of power transfer over longer distances (50 feet) so that soldier recharging from vehicles and recharging from areas within a forward operating base can become realities.

The concept is to develop a future interoperable system so that organic soldier equipment recharging can reduce both the cognitive and physical load on the dismounted soldier.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 19, 2014

News: SpaceX’s attempt to land rocket on floating barge postponed - It’s set to be one of the most groundbreaking moments in humanity’s six decades of space exploration. Obama signs $1.1 trillion spending bill into law - President Obama signed the $1.1 trillion federal spending measure into law Dec. 16, officially ending any threat of a government...
 
 

News Briefs December 19, 2014

Trial set for ex-Navy engineer in military secrets case A former Navy civilian engineer is scheduled to stand trial next summer on charges of trying to steal aircraft carrier schematics. Media outlets report that 35-year-old Mostafa Awwad of Yorktown, Va., pleaded not guilty Dec. 17 to two counts of attempted exportation of defense articles and...
 
 
Army photograph by C. Todd Lopez

Army to launch cruise missile-detecting aerostat at Aberdeen Proving Ground

Army photograph by C. Todd Lopez The Army plans to launch an aerostat, part of the “Joint Land Attack Cruise Missile Defense Elevated Netted Sensor,” in late December 2014. The JLENS aerostat will be tethered to the...
 

 
Air Force photograph by SrA. Jordan Castelan

AF delivers Iraqi F-16s for training in US

Air Force photograph by SrA. Jordan Castelan Iraqi air force captain Hama conducts preflight inspections while inside a new to service Iraqi F-16 Fighting Falcon Dec. 17, 2014, located at the nearby Tucson International Airport...
 
 
Air Force photograph by SSgt. Derek VanHorn

Short-notice: A new way to exercise

Air Force photograph by SSgt. Derek VanHorn Airmen from Kadena Air Base, Japan, prepare for an aeromedical evacuation exercise on a KC-135 Stratotanker Dec. 5, 2014, at Misawa Air Base, Japan. The operation was executed in supp...
 
 
Lockheed Martin photograph by Andy Wolfe

Japan, Australia to provide F-35 maintenance sites in Pacific region

Lockheed Martin photograph by Andy Wolfe An F-35C Lightning II joint strike fighter carrier variant prepares to launch from the aircraft carrier USS Nimitz in the Pacific Ocean, Nov. 6, 2014. Japan and Australia will be sharing...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>