Tech

May 10, 2012

Army scientists explore wireless power transfer

Tags:
by Bindu Nair
Army News

Army Science and Technology has demonstrated wireless power transfer over 4-5 inches from helmet to vest.

The American soldier is equipped with more capabilities than ever before. These capabilities come in the form of new and more powerful devices that translate to a need for more power.

Currently, power is supplied to the dismounted Soldier through a collection of batteries, many of them rechargeable. A focus of Army Science and Technology is to figure out how to power the soldier, and to enable all of his/her new capabilities, without increasing (and ideally decreasing) his/her physical load.

In order to accomplish this imperative, the U.S. Army is exploring a variety of different technologies and concepts. One exciting technology that opens up different concepts of powering the soldier is the wireless transfer of power. The U.S. Army is allocating $5-$6 million to advance these technologies.

Wireless power could eliminate the need for bulky cables, especially between the Soldier’s helmet and vest (where centralized power sources might reside). Wireless power also allows for the recharging of Soldier gear whenever the Soldier enters a “recharging zone,” to include a vehicle, certain areas within a forward operating base, etc.

The U.S. Army funds the Institute for Soldier Nanotechnology,or ISN, at the Massachusetts Institute of Technology, known as MIT, in Cambridge, Mass. One of the many discoveries at the ISN is the invention and development of strongly coupled magnetic resonators that can transfer electrical power over (relatively) large distances.

Scientists and engineers at the U.S. Army’s Natick Soldier Research Development and Engineering Center, or NSRDEC, in Natick, Mass., have picked up this concept and worked with the company founded by ISN technology developers, as well as its competitors, to design systems that can wirelessly transfer power between the soldier helmet and the soldier vest.

Current capabilities allow for using a soldier battery (Li-145) on the vest or torso to transmit ~5W of power to a helmet receiver at about 50 percent efficiency. Current programs are in place to increase that efficiency. As might be expected, the shorter the distance required for power transfer, the more efficient the transfer process.

The U.S. Army is also leveraging work performed by the Defense Advanced Research Projects Agency. One effort of note explores the simultaneous wireless recharging of multiple items. The U.S. Army’s Tank and Automotive Research Development and Engineering Center, known as TARDEC, in Warren, Mich., and Communications Electronics Research Development and Engineering Center, or CERDEC, in Aberdeen, Md., are both expanding on this (and alternative) technologies to increase the efficiency of power transfer over longer distances (50 feet) so that soldier recharging from vehicles and recharging from areas within a forward operating base can become realities.

The concept is to develop a future interoperable system so that organic soldier equipment recharging can reduce both the cognitive and physical load on the dismounted soldier.

 




All of this week's top headlines to your email every Friday.


 
 

 
darpa-notice

DARPA Tactical Technology Office invites innovative risk-takers to attend 2014 Office-Wide Proposers Day

DARPAs Tactical Technology Office invests in innovative platforms, weapons, integrated systems and critical systems components that often incorporate emerging advanced technologies, all designed to preserve and extend decisive ...
 
 

AFRL provides environmentally-preferred alternatives for removing radome coatings

Radomes, tail cones, and other fiberglass or composite components on E-3, KC-135, and B-52 aircraft are coated with polyurethane rain erosion resistant coatings to protect them from the effects of rain erosion in flight. Oklahoma City Air Logistics Complex (OC-ALC) production workers must remove the coatings during depot overhaul to allow for inspection and repair....
 
 
darpa-uav-network

Remote troops closer to having high-speed wireless networks mounted on UAVs

Missions in remote, forward operating locations often suffer from a lack of connectivity to tactical operation centers and access to valuable intelligence, surveillance, and reconnaissance data. The assets needed for long-range...
 

 
Photograph courtesy of Research Center for Marine Geosciences/DLR

NASA signs agreement with German, Canadian partners to test alternative fuels

NASA photograph A heavily instrumented NASA HU-25 Falcon measures chemical components from the larger DC-8′s exhaust generated by a 50/50 mix of conventional jet fuel and a plant-derived biofuel, demonstrating the type of...
 
 
darpa-phoenix2

Phoenix makes strides in orbital robotics, satellite architecture research

The process of designing, developing, building and deploying satellites is long and expensive. Satellites today cannot follow the terrestrial paradigm of “assemble, repair, upgrade, reuse,” and must be designed to operate w...
 
 

AFRL researchers uncover structural, function relationships in bioinspired nanomaterials

In his 1954 work, The Nature of Science, Edwin Powell Hubble said, “Equipped with his five senses, man explores the universe around him and calls the adventure Science.” During his tenure with the Air Force Research Laboratory, National Research Council associate Dr. Nick Bedford, embarked on such an adventure that applied both biological and physical...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>