Tech

May 10, 2012

Army scientists explore wireless power transfer

Tags:
by Bindu Nair
Army News

Army Science and Technology has demonstrated wireless power transfer over 4-5 inches from helmet to vest.

The American soldier is equipped with more capabilities than ever before. These capabilities come in the form of new and more powerful devices that translate to a need for more power.

Currently, power is supplied to the dismounted Soldier through a collection of batteries, many of them rechargeable. A focus of Army Science and Technology is to figure out how to power the soldier, and to enable all of his/her new capabilities, without increasing (and ideally decreasing) his/her physical load.

In order to accomplish this imperative, the U.S. Army is exploring a variety of different technologies and concepts. One exciting technology that opens up different concepts of powering the soldier is the wireless transfer of power. The U.S. Army is allocating $5-$6 million to advance these technologies.

Wireless power could eliminate the need for bulky cables, especially between the Soldier’s helmet and vest (where centralized power sources might reside). Wireless power also allows for the recharging of Soldier gear whenever the Soldier enters a “recharging zone,” to include a vehicle, certain areas within a forward operating base, etc.

The U.S. Army funds the Institute for Soldier Nanotechnology,or ISN, at the Massachusetts Institute of Technology, known as MIT, in Cambridge, Mass. One of the many discoveries at the ISN is the invention and development of strongly coupled magnetic resonators that can transfer electrical power over (relatively) large distances.

Scientists and engineers at the U.S. Army’s Natick Soldier Research Development and Engineering Center, or NSRDEC, in Natick, Mass., have picked up this concept and worked with the company founded by ISN technology developers, as well as its competitors, to design systems that can wirelessly transfer power between the soldier helmet and the soldier vest.

Current capabilities allow for using a soldier battery (Li-145) on the vest or torso to transmit ~5W of power to a helmet receiver at about 50 percent efficiency. Current programs are in place to increase that efficiency. As might be expected, the shorter the distance required for power transfer, the more efficient the transfer process.

The U.S. Army is also leveraging work performed by the Defense Advanced Research Projects Agency. One effort of note explores the simultaneous wireless recharging of multiple items. The U.S. Army’s Tank and Automotive Research Development and Engineering Center, known as TARDEC, in Warren, Mich., and Communications Electronics Research Development and Engineering Center, or CERDEC, in Aberdeen, Md., are both expanding on this (and alternative) technologies to increase the efficiency of power transfer over longer distances (50 feet) so that soldier recharging from vehicles and recharging from areas within a forward operating base can become realities.

The concept is to develop a future interoperable system so that organic soldier equipment recharging can reduce both the cognitive and physical load on the dismounted soldier.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines November 21, 2014

News: Dempsey lays groundwork for larger 2016 defense budget - The top U.S. military official on Wednesday made the case for growing the base defense budget significantly over the $535 billion spending cap imposed by Congress for fiscal 2015.   Business: Boeing can bill $61 million that Pentagon withheld for months - The Pentagon withheld $60.5 million...
 
 

News Briefs November 21, 2014

Obama aide: U.S. should look at Ukraine military aid A senior aide of President Barack Obama says he believes the U.S. should consider giving Ukraine lethal, defensive military assistance to get Russia to think twice about its destabilizing behavior. Tony Blinken, the deputy national security adviser, cites serious violations by Russia of agreements not to...
 
 
Air Force photograph by SrA. Divine Cox

Kunsan AB hosts Exercise Max Thunder 14-2

Air Force photograph by SrA. Divine Cox A South Korean air force F-15 Strike Eagle lands Nov. 17, 2014, during Max Thunder 14-2 at Kunsan Air Base, South Korea. U.S. Air Force, Army, Marine Corps and Navy personnel and aircraft...
 

 
LM-facility

Lockheed Martin opens Surface Navy Innovation Center

Lockheed Martin has opened the Surface Navy Innovation Center in Moorestown, N.J., to support the development of new technologies for the U.S. Navy. The SNIC is a research, development and demonstration facility that brings tog...
 
 
raytheon-test

Raytheon successfully demonstrates integrated electronic warfare capabilities

EL SEGUNDO, Calif. – Raytheon, in collaboration with the U.S. Navy, successfully demonstrated an end to end, first of its kind, integrated electronic attack system during flight tests at the Naval Air Weapons Station Chi...
 
 

Three bases identified as F-16 aggressor candidate bases

U.S. Air Force photo by Tech. Sgt. Joseph Swafford Jr. A U.S. Air Force F-16 Fighting Falcon fighter aircraft assigned to the 18th Aggressor Squadron lands at Eielson Air Force Base, Alaska, Oct. 6 during RED FLAG-Alaska 15-1. RF-A is a series of Pacific Air Forces commander-directed field training exercises for U.S. and partner nation...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>