Tech

May 10, 2012

HIFiRE scramjet research flight will advance hypersonic technology

Courtesy photograph
The Hypersonic International Flight Research Experimentation Program launches an experimental hypersonic scramjet vehicle from the Pacific Missile Range Facility in Hawaii during a recent research flight. The program is a joint effort between Air Force Research Laboratory, NASA and Australia's Defence Science and Technology Organisation aimed at exploring the fundamental technologies needed to achieve practical hypersonic flight.

An international team that includes NASA and the U.S. Air Force Research Laboratory is celebrating the successful launch of an experimental hypersonic scramjet research flight from the Pacific Missile Range Facility in Hawaii.

NASA, AFRL and Australia’s Defence Science and Technology Organisation are working with a number of partners on the HIFiRE (Hypersonic International Flight Research Experimentation Program) program to advance hypersonic flight – normally defined as beginning at Mach 5 – five times the speed of sound.

The research program is aimed at exploring the fundamental technologies needed to achieve practical hypersonic flight. Being able to fly at hypersonic speeds would revolutionize high speed to long distance flight and provide more cost-effective access to space.

During the experiment the scramjet climbed to approximately 100,000 feet in altitude, accelerated from Mach 6 to Mach 8 and operated about 12 seconds – a huge accomplishment for flight at hypersonic speeds. It was the fourth of a planned series of up to 10 flights under HIFiRE and the second focused on scramjet engine research.

The HIFiRE 2 scramjet research payload included a hypersonic inward turning inlet, followed by a scramjet combustor and dual-exhaust nozzle. In other words it looked sort of like a giant mechanical alligator with its jaws open or an old-fashioned clothespin – the kind without the metal clip. Over 700 instruments on board recorded and transmitted data to researchers on the ground. The payload was developed under a partnership between the AFRL and NASA, with contributions from the Navy’s detachment at White Sands Missile Range, N.M. and ATK GASL located in Ronkonkoma, N.Y.

“This is the first time we have flight tested a hydrocarbon-fueled scramjet accelerating from Mach 6.5 to Mach 8,” said NASA Hypersonics Project Scientist Ken Rock, based at NASA’S Langley Research Center in Hampton, Va. “The test will give us unique scientific data about scramjets transitioning from subsonic to supersonic combustion – something we can’t simulate in wind tunnels.”

The data collected during the execution of the HIFiRE experiments is expected to make a significant contribution to the development of future high-speed air-breathing engine concepts and help improve design, modeling, and simulation tools.

The success of the three-stage launch system, consisting of two Terrier boost motors and an Oriole sustainer motor, is another significant achievement of the HIFiRE 2 mission. The HIFiRE 2 mission, the first flight of this sounding rocket configuration, opens the door for a new high-performance flight configuration to support future Air Force, Navy, and NASA flight research.

The HIFiRE team has already achieved some significant milestones such as the design, assembly and extensive pre-flight testing of the hypersonic vehicles and the design of complex avionics and flight systems. This successful flight test of a hydrocarbon-fueled scramjet research combustor represents yet another significant achievement for the HIFiRE program, with additional test flights scheduled in the coming months and years.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph

NASA, partners test unmanned aircraft systems

NASA photograph NASA’s Ikhana is being used to test a system that will allow uncrewed aircraft to fly routine operations within the National Airspace System. NASA, working with government and industry partners, is testing...
 
 
NASA photograph

NASA-developed air traffic management tool flies into use

NASA photograph NASA Future Flight Central is a national Air Traffic Control/Air Traffic Management (ATC/ATM) simulation facility. The two-story facility offers a 360-degree full-scale, real-time simulation of an airport, where...
 
 
NASA photograph

Robotics teams prepare to compete for $1.5 million in NASA Challenge

NASA photograph The Los Angeles team Survey’s robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at t...
 

 

NASA invests in future of aviation with supersonic research projects

Quieter, greener supersonic travel is the focus of eight studies selected by NASAís Commercial Supersonic Technology Project to receive more than $2.3 million in funding for research that may help overcome the remaining barriers to commercial supersonic flight. The research, which will be conducted by universities and industry, will address sonic booms and high-altitude emissions...
 
 
afrl-sensors

Sensors Directorate co-sponsors autonomous aerial vehicle competition

Members from the University of Toledo, Ohio, team make adjustments to their multirotor aircraft prior to the autonomous aerial vehicle competition. The Air Force Research Laboratory Sensors Directorate hosted the event April 28...
 
 
NASA photograph by David C. Bowman

NASA’s Langley Research Center named Vertical Flight Heritage Site

NASA photograph by David C. Bowman In a May 8ceremony, NASA’s Langley Research Center in Hampton, Virginia, was formally designated a Vertical Flight Heritage Site by the American Helicopter Society (AHS) International. F...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>