Tech

May 10, 2012

HIFiRE scramjet research flight will advance hypersonic technology

Courtesy photograph
The Hypersonic International Flight Research Experimentation Program launches an experimental hypersonic scramjet vehicle from the Pacific Missile Range Facility in Hawaii during a recent research flight. The program is a joint effort between Air Force Research Laboratory, NASA and Australia's Defence Science and Technology Organisation aimed at exploring the fundamental technologies needed to achieve practical hypersonic flight.

An international team that includes NASA and the U.S. Air Force Research Laboratory is celebrating the successful launch of an experimental hypersonic scramjet research flight from the Pacific Missile Range Facility in Hawaii.

NASA, AFRL and Australia’s Defence Science and Technology Organisation are working with a number of partners on the HIFiRE (Hypersonic International Flight Research Experimentation Program) program to advance hypersonic flight – normally defined as beginning at Mach 5 – five times the speed of sound.

The research program is aimed at exploring the fundamental technologies needed to achieve practical hypersonic flight. Being able to fly at hypersonic speeds would revolutionize high speed to long distance flight and provide more cost-effective access to space.

During the experiment the scramjet climbed to approximately 100,000 feet in altitude, accelerated from Mach 6 to Mach 8 and operated about 12 seconds – a huge accomplishment for flight at hypersonic speeds. It was the fourth of a planned series of up to 10 flights under HIFiRE and the second focused on scramjet engine research.

The HIFiRE 2 scramjet research payload included a hypersonic inward turning inlet, followed by a scramjet combustor and dual-exhaust nozzle. In other words it looked sort of like a giant mechanical alligator with its jaws open or an old-fashioned clothespin – the kind without the metal clip. Over 700 instruments on board recorded and transmitted data to researchers on the ground. The payload was developed under a partnership between the AFRL and NASA, with contributions from the Navy’s detachment at White Sands Missile Range, N.M. and ATK GASL located in Ronkonkoma, N.Y.

“This is the first time we have flight tested a hydrocarbon-fueled scramjet accelerating from Mach 6.5 to Mach 8,” said NASA Hypersonics Project Scientist Ken Rock, based at NASA’S Langley Research Center in Hampton, Va. “The test will give us unique scientific data about scramjets transitioning from subsonic to supersonic combustion – something we can’t simulate in wind tunnels.”

The data collected during the execution of the HIFiRE experiments is expected to make a significant contribution to the development of future high-speed air-breathing engine concepts and help improve design, modeling, and simulation tools.

The success of the three-stage launch system, consisting of two Terrier boost motors and an Oriole sustainer motor, is another significant achievement of the HIFiRE 2 mission. The HIFiRE 2 mission, the first flight of this sounding rocket configuration, opens the door for a new high-performance flight configuration to support future Air Force, Navy, and NASA flight research.

The HIFiRE team has already achieved some significant milestones such as the design, assembly and extensive pre-flight testing of the hypersonic vehicles and the design of complex avionics and flight systems. This successful flight test of a hydrocarbon-fueled scramjet research combustor represents yet another significant achievement for the HIFiRE program, with additional test flights scheduled in the coming months and years.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by David Alexander

NASA MQ-9 remotely piloted aircraft completes visual, radar mission in Hawaii

NASA photograph “Ikhana,” NASA’s MQ-9 remotely piloted research aircraft, carries a maritime radar in a specialized centerline pod during a flight to check out systems prior to the aircraft’s deployment ...
 
 
NASA photograph by Tom Tschida

NASA Armstrong’s space shuttle Mate-Demate Device coming down

NASA photograph by Tom Tschida The space shuttle Mate-Demate Device that stood as an iconic symbol of NASA’s now-concluded Space Shuttle Program at NASA Armstrong Flight Research Center for 38 years is being dismantled af...
 
 

NASA awards research facilities, engineering support services contract

NASA has awarded a contract for research facilities and engineering support services to InuTeq, LLC of Greenbelt, Maryland, in support of the Mission Information and Test Systems Directorate at NASA’s Armstrong Flight Research Center, Edwards, Calif. This cost-plus-award-fee contract covers a one-year base period beginning Nov. 1, 2014 and four one-year options, and is valued...
 

 

NASA picks top Earth data challenge ideas, opens call for climate apps

NASA has selected four ideas from the public for innovative uses of climate projections and Earth-observing satellite data. The agency also has announced a follow-on challenge with awards of $50,000 to build climate applications based on OpenNEX data on the Amazon cloud computing platform. Both challenges use the Open NASA Earth Exchange, or OpenNEX, a...
 
 
nasa-flying-lab

NASA’s flying laboratories study our world

Throughout the remainder of 2014, NASA is flying a series of airborne research campaigns from the North Pole to the South Pole and many points in between ñ to take a closer look at U.S. air quality, hurricanes in the Atlantic ...
 
 

NASA selects proposals to increase STEM education at community, technical colleges

NASA’s Office of Education will award more than $17.3 million through the National Space Grant and Fellowship Program to increase student and faculty engagement in science, technology, engineering and mathematics at community colleges and technical schools across the United States. Each award has a two-year performance period and a maximum value of $500,000. The 35...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>