Tech

May 10, 2012

HIFiRE scramjet research flight will advance hypersonic technology

Courtesy photograph
The Hypersonic International Flight Research Experimentation Program launches an experimental hypersonic scramjet vehicle from the Pacific Missile Range Facility in Hawaii during a recent research flight. The program is a joint effort between Air Force Research Laboratory, NASA and Australia's Defence Science and Technology Organisation aimed at exploring the fundamental technologies needed to achieve practical hypersonic flight.

An international team that includes NASA and the U.S. Air Force Research Laboratory is celebrating the successful launch of an experimental hypersonic scramjet research flight from the Pacific Missile Range Facility in Hawaii.

NASA, AFRL and Australia’s Defence Science and Technology Organisation are working with a number of partners on the HIFiRE (Hypersonic International Flight Research Experimentation Program) program to advance hypersonic flight – normally defined as beginning at Mach 5 – five times the speed of sound.

The research program is aimed at exploring the fundamental technologies needed to achieve practical hypersonic flight. Being able to fly at hypersonic speeds would revolutionize high speed to long distance flight and provide more cost-effective access to space.

During the experiment the scramjet climbed to approximately 100,000 feet in altitude, accelerated from Mach 6 to Mach 8 and operated about 12 seconds – a huge accomplishment for flight at hypersonic speeds. It was the fourth of a planned series of up to 10 flights under HIFiRE and the second focused on scramjet engine research.

The HIFiRE 2 scramjet research payload included a hypersonic inward turning inlet, followed by a scramjet combustor and dual-exhaust nozzle. In other words it looked sort of like a giant mechanical alligator with its jaws open or an old-fashioned clothespin – the kind without the metal clip. Over 700 instruments on board recorded and transmitted data to researchers on the ground. The payload was developed under a partnership between the AFRL and NASA, with contributions from the Navy’s detachment at White Sands Missile Range, N.M. and ATK GASL located in Ronkonkoma, N.Y.

“This is the first time we have flight tested a hydrocarbon-fueled scramjet accelerating from Mach 6.5 to Mach 8,” said NASA Hypersonics Project Scientist Ken Rock, based at NASA’S Langley Research Center in Hampton, Va. “The test will give us unique scientific data about scramjets transitioning from subsonic to supersonic combustion – something we can’t simulate in wind tunnels.”

The data collected during the execution of the HIFiRE experiments is expected to make a significant contribution to the development of future high-speed air-breathing engine concepts and help improve design, modeling, and simulation tools.

The success of the three-stage launch system, consisting of two Terrier boost motors and an Oriole sustainer motor, is another significant achievement of the HIFiRE 2 mission. The HIFiRE 2 mission, the first flight of this sounding rocket configuration, opens the door for a new high-performance flight configuration to support future Air Force, Navy, and NASA flight research.

The HIFiRE team has already achieved some significant milestones such as the design, assembly and extensive pre-flight testing of the hypersonic vehicles and the design of complex avionics and flight systems. This successful flight test of a hydrocarbon-fueled scramjet research combustor represents yet another significant achievement for the HIFiRE program, with additional test flights scheduled in the coming months and years.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines May 27, 2015

News: U.S. Air Force certifies SpaceX for military launches - SpaceX has been certified for military space launch, the U.S. Air Force announced May 26. The long-awaited announcement is a game changer, with SpaceX becoming only the second provider cleared by the service to launch national security payloads into orbit.   Business: Northrop Grumman CEO issues...
 
 

New’s Briefs May 27, 2015

U.S. military begins search flights for stranded Rohingya The United States has begun military surveillance flights to help locate stranded Rohingya and Bangladeshi boat people in Southeast Asian seas. State Department spokesman Jeff Rathke said May 26 that U.S. Navy P8 aircraft flew over the weekend with Malaysian support. Rathke said the U.S. has offered...
 
 
nasa-commercial-crew

Commercial Crew milestones met; partners on track for 2017 missions

NASA has taken another step toward returning America’s ability to launch crew missions to the International Space Station from the United States in 2017. The Commercial Crew Program ordered its first crew rotation mission fro...
 

 
af-spacex

Air Force certifies SpaceX for national security space missions

Lt. Gen. Samuel Greaves, commander of the Air Force Space and Missile Systems Center and Air Force program executive officer for space, has announced the certification of Space Exploration Technologies Corporation’s Falco...
 
 

Northrop Grumman passes key design review for B-2 weapons management upgrade

Northrop Grumman has successfully demonstrated to the U.S. Air Force that its plans to upgrade key weapons management software for the B-2 stealth bomber are on track and ready to proceed to the next level of development. The company successfully completed the critical design review of the service’s Flexible Strike Phase 1 program on Feb...
 
 
boeing-space

Boeing awarded first-ever commercial human spaceflight mission

NASA issued a task order as part of Boeing’s $4.2 billion Commercial Crew Transportation Capability contract recently to include the company’s first-ever service flight to the International Space Station. The award ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>