Tech

May 10, 2012

HIFiRE scramjet research flight will advance hypersonic technology

Courtesy photograph
The Hypersonic International Flight Research Experimentation Program launches an experimental hypersonic scramjet vehicle from the Pacific Missile Range Facility in Hawaii during a recent research flight. The program is a joint effort between Air Force Research Laboratory, NASA and Australia's Defence Science and Technology Organisation aimed at exploring the fundamental technologies needed to achieve practical hypersonic flight.

An international team that includes NASA and the U.S. Air Force Research Laboratory is celebrating the successful launch of an experimental hypersonic scramjet research flight from the Pacific Missile Range Facility in Hawaii.

NASA, AFRL and Australia’s Defence Science and Technology Organisation are working with a number of partners on the HIFiRE (Hypersonic International Flight Research Experimentation Program) program to advance hypersonic flight – normally defined as beginning at Mach 5 – five times the speed of sound.

The research program is aimed at exploring the fundamental technologies needed to achieve practical hypersonic flight. Being able to fly at hypersonic speeds would revolutionize high speed to long distance flight and provide more cost-effective access to space.

During the experiment the scramjet climbed to approximately 100,000 feet in altitude, accelerated from Mach 6 to Mach 8 and operated about 12 seconds – a huge accomplishment for flight at hypersonic speeds. It was the fourth of a planned series of up to 10 flights under HIFiRE and the second focused on scramjet engine research.

The HIFiRE 2 scramjet research payload included a hypersonic inward turning inlet, followed by a scramjet combustor and dual-exhaust nozzle. In other words it looked sort of like a giant mechanical alligator with its jaws open or an old-fashioned clothespin – the kind without the metal clip. Over 700 instruments on board recorded and transmitted data to researchers on the ground. The payload was developed under a partnership between the AFRL and NASA, with contributions from the Navy’s detachment at White Sands Missile Range, N.M. and ATK GASL located in Ronkonkoma, N.Y.

“This is the first time we have flight tested a hydrocarbon-fueled scramjet accelerating from Mach 6.5 to Mach 8,” said NASA Hypersonics Project Scientist Ken Rock, based at NASA’S Langley Research Center in Hampton, Va. “The test will give us unique scientific data about scramjets transitioning from subsonic to supersonic combustion – something we can’t simulate in wind tunnels.”

The data collected during the execution of the HIFiRE experiments is expected to make a significant contribution to the development of future high-speed air-breathing engine concepts and help improve design, modeling, and simulation tools.

The success of the three-stage launch system, consisting of two Terrier boost motors and an Oriole sustainer motor, is another significant achievement of the HIFiRE 2 mission. The HIFiRE 2 mission, the first flight of this sounding rocket configuration, opens the door for a new high-performance flight configuration to support future Air Force, Navy, and NASA flight research.

The HIFiRE team has already achieved some significant milestones such as the design, assembly and extensive pre-flight testing of the hypersonic vehicles and the design of complex avionics and flight systems. This successful flight test of a hydrocarbon-fueled scramjet research combustor represents yet another significant achievement for the HIFiRE program, with additional test flights scheduled in the coming months and years.

 




All of this week's top headlines to your email every Friday.


 
 

 

News Briefs February 27, 2015

Ukraine will start pulling back heavy weapons in the east Ukraine’s military says it will start pulling back its heavy weapons from the front line with Russian-backed separatists as required under a cease-fire agreement. The Defense Ministry said in a statement Feb. 26 that it reserved the right to revise its withdrawal plans in the...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 

 
navy-china

USS Fort Worth conducts CUES with Chinese Navy

The littoral combat ship USS Fort Worth (LCS 3) practiced the Code for Unplanned Encounters at Sea (CUES) with the People’s Liberation Army-Navy Jiangkai II frigate Hengshui (FFG 572) Feb. 23 enhancing the professional ma...
 
 

AEGIS tracks, simulates engagement of three short-range ballistic missiles

The Missile Defense Agency and sailors aboard the guided-missile destroyers USS Carney (DDG 64), USS Gonzalez (DDG 66), and USS Barry (DDG 52) successfully completed a flight test involving the Aegis Ballistic Missile Defense weapon system. At approximately 2:30 a.m., EST, Feb. 26, three short-range ballistic missile targets were launched near simultaneously from NASA’s Wallops...
 
 

DOD seeks novel ideas to shape its technological future

The Defense Department is seeking novel ideas to shape its future, and officials are looking to industry, small business, academia, start-ups, the public – anyone, really – to boost its ability to prevail against adversaries whose access to technology grows daily. The program, called the Long-Range Research and Development Plan, or LRRDP, began with an...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>