Tech

May 17, 2012

NASA campaign studying chemistry of thunderstorms

The DC3 mission is investigating the chemistry of thunderstorms, such as this one in Kansas being studied by a team from the National Oceanic and Atmospheric Administration.

NASA researchers are about to fly off on a campaign that will take them into the heart of thunderstorm country.

The Deep Convective Clouds and Chemistry field campaign will use an airport in Salina, Kansas, as a base to explore the impact of large thunderstorms on the concentration of ozone and other substances in the upper troposphere.

The campaign is being led by the National Center for Atmospheric Research in Boulder, Colo., and is funded by the National Science Foundation and NASA.

“Thunderstorms provide a mechanism for rapid lifting of air from the surface to higher altitudes in a matter of minutes to hours,” said James Crawford of NASA’s Langley Research Center in Hampton, Va., and a member of the mission’s scientific steering committee.

NASA’s DC-8 Earth Science laboratory sports numerous probes for collecting atmospheric samples. The aircraft, based at the Dryden Aircraft Operations Facility in Palmdale, Calif., is ready to participate in the DC3 campaign.

“This allows molecules that are short-lived and more abundant near the surface to be transported to the upper troposphere in amounts that could not happen under normal atmospheric conditions,” he said.

Additional chemical impacts come from the production of nitrogen oxides by lightning, but the details of these processes are not well understood.

“All of this together has an influence on ozone in the coldest part of the atmosphere where it exerts the largest influence on climate,” Crawford said. “Of the chemicals we’ll be studying, nitrogen oxides in particular are key to the creation of ozone and are produced both naturally by lightning and by human activity through the burning of fossil fuels.”

The campaign is scheduled to run May 15 to June 30. NASA partners include Langley, Goddard Space Flight Center in Greenbelt, Md., Marshall Space Flight Center in Huntsville, Ala., Ames Research Center at Moffett Field, Calif. and Dryden Flight Research Center in Edwards, Calif.

The troposphere is the lowest part of the atmosphere, extending from the ground up to an average depth of 11 miles in the middle latitudes. It contains about 80 percent of the atmosphere’s mass and 99 percent of its water vapor. This region is important because water vapor, ozone, cirrus clouds and particles such as dust contribute to the amount of radiation – heat – allowed in and out of the atmosphere, and have a direct impact on the climate system.

“We tend to associate thunderstorms with heavy rain and lightning, but they also shake things up at the top of cloud level,” said NCAR scientist Chris Cantrell, a DC3 principal investigator. “Their impacts high in the atmosphere have effects on climate that last long after the storm dissipates.”

 

Flights cover several states

During the mission, a NASA DC-8 carrying more than 20 instruments measuring scores of substances will make far-reaching flights out of Salina in coordination with a network of ground-based radar, lightning antenna stations and instrumentation in Colorado, Oklahoma and Alabama. The aircraft’s home is Dryden Flight Research Center.

The DC-8 is flying in tandem with the NSF/NCAR Gulfstream-V, a higher-flying aircraft able to more consistently reach the altitudes where outflow from deep convection deposits material.

The DC-8 will sample outflow when possible, but more importantly will focus on lower altitude inflow conditions, and on pre- and post-storm changes in how material is distributed with altitude. Its range will also enable it to sample outflow downwind of storms to examine chemical changes induced by the lifted material.

NASA’s DC-8 will carry more than 20 instruments on the DC3 mission to investigation thunderstorms.

The principal investigators are from NCAR, Pennsylvania State University and Colorado State University, the National Oceanic and Atmospheric Administration, and numerous university and partners and international collaborators. German scientists will bring yet a third plane, a Dassault Falcon.

The DC3 mission is related to another airborne campaign examining the role of deep convection in transporting material from the surface to the upper atmosphere. The DC-8 and Gulfstream-V will both participate in the Southeast Asia Composition, Cloud, Climate Coupling Regional Study mission that will take place in August and September this year from a base in Thailand.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by Tom Tschida

NASA Armstrong leads team to test effects of volcanic ash on aircraft engines

NASA photograph by Tom Tschida Volcanic ash is sprayed into one of the F117 engines of a C-17 during the final phase of the Vehicle Integrated Propulsion Research (VIPR) project July 9 at Edwards. The VIPR team, comprised of NA...
 
 
NASA photograph

NASA, partners test unmanned aircraft systems

NASA photograph NASA’s Ikhana is being used to test a system that will allow uncrewed aircraft to fly routine operations within the National Airspace System. NASA, working with government and industry partners, is testing...
 
 
NASA photograph

NASA-developed air traffic management tool flies into use

NASA photograph NASA Future Flight Central is a national Air Traffic Control/Air Traffic Management (ATC/ATM) simulation facility. The two-story facility offers a 360-degree full-scale, real-time simulation of an airport, where...
 

 
NASA photograph

Robotics teams prepare to compete for $1.5 million in NASA Challenge

NASA photograph The Los Angeles team Survey’s robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at t...
 
 

NASA invests in future of aviation with supersonic research projects

Quieter, greener supersonic travel is the focus of eight studies selected by NASAĆ­s Commercial Supersonic Technology Project to receive more than $2.3 million in funding for research that may help overcome the remaining barriers to commercial supersonic flight. The research, which will be conducted by universities and industry, will address sonic booms and high-altitude emissions...
 
 
afrl-sensors

Sensors Directorate co-sponsors autonomous aerial vehicle competition

Members from the University of Toledo, Ohio, team make adjustments to their multirotor aircraft prior to the autonomous aerial vehicle competition. The Air Force Research Laboratory Sensors Directorate hosted the event April 28...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>