Space

May 23, 2012

NASA’s wind tunnel aids SpaceX reusable launch system design

The first stage of the SpaceX Falcon 9 rocket is in the foreground, the second stage (background). The Falcon 9 rocket is responsible for launching the Dragon spacecraft.

NASA’s Marshall Space Flight Center in Huntsville, Ala., completed wind tunnel testing for Space Exploration Technologies of Hawthorn, Calif., to provide Falcon 9 first stage re-entry data for the company’s advanced reusable launch vehicle system.

Under a Reimbursable Space Act Agreement, Marshall conducted 176 runs in the wind tunnel test facility on the Falcon 9 first stage to provide SpaceX with test data that will be used to develop a re-entry database for the recovery of the Falcon 9 first stage. Tests were conducted at several orientations and speeds ranging from Mach numbers 0.3, or 228 miles per hour at sea level, to Mach 5, or 3,811 miles per hour at sea level, to gage how the first stage reacts during the descent phase of flight.

“Marshall’s aerodynamics team has vast experience in launch vehicle design and development and our wind tunnel offers an affordable, quick-turn solution to companies who are looking to generate aerodynamic test data on early launch vehicle design configurations,” said Teresa Vanhooser, manager of the Flight Programs and Partnerships Office at Marshall. “We believe that providing technical expertise enables development of new and innovative technologies that aid the industry as a whole and helps NASA to continue with our deep space exploration mission.”

Marshall’s Aerodynamic Research Facility’s 14-square-inch trisonic wind tunnel is an intermittent, blow-down tunnel that operates from high-pressure storage to either vacuum or atmospheric exhaust. The facility is capable of conducting tests in the subsonic, transonic, and supersonic mach ranges using its two interchangeable test sections. Subsonic Mach numbers are below Mach 1, the speed of sound, or 760 miles per hour at sea level, while transonic speeds approach and are slightly above Mach 1. The facility can achieve a maximum supersonic Mach number of 5, or five times the speed of sound.

In addition to wind tunnel testing, Marshall is providing propulsion engineering support to SpaceX in the development of the SuperDraco Launch Abort System and on-orbit propulsion systems. Marshall is supplying SpaceX with Reaction Control Systems lessons learned that will be incorporated into the Dragon spacecraft’s design for steering and attitude control. Marshall engineers also are providing technical insight in the development of materials and processes to support future improvements of the Falcon 9 and Dragon to be used in the SpaceX Commercial Crew Development Program.

“Since 2007, Marshall has supported the Commercial Orbital Transportation Services Program by providing engineering expertise and technical insight to aid our commercial partners in developing their transportation capabilities,” stated Vanhooser. “The Marshall Center has over 50 years of spaceflight experience and propulsion expertise to draw upon to help our commercial partners solve the complex challenges of space travel.”

Marshall has been engaged throughout the development in evaluating the Falcon 9 launch vehicle and Dragon spacecraft systems’ design under the Commercial Orbital Transportation Services Program led by the Johnson Space Center in Houston for the Human Exploration and Operations Mission Directorate (HEOMD) in Washington. The Marshall team supported various design reviews, flight readiness reviews, post-flight reviews and special studies.

The Marshall Center also provides SpaceX technical support as requested under the Commercial Crew Program led by the Kennedy Space Center for HEOMD. Engineers from the Marshall Center have been engaged with SpaceX by serving as the CCP launch vehicle systems lead and by providing discipline support to the partner integration teams.




All of this week's top headlines to your email every Friday.


 
 

 
NASA image by Eric Stern

NASA announces early stage innovations space tech research grants

NASA image by Eric Stern Advanced thermal protection materials modeling using the Direct Simulation Monte Carlo (DSMC) method simulates the flow through porous TPS materials. Research into these sorts of advanced technologies e...
 
 

NASA awards launch services contract for Ionospheric Connection Explorer

NASA has selected Orbital Sciences Corporation of Dulles, Va., to provide launch services for the Ionospheric Connection Explorer mission. ICON is targeted to launch in June 2017 from the Reagan Test Site on Kwajalein Atoll in the Republic of the Marshall Islands aboard a Pegasus XL launch vehicle from Orbital’s “Stargazer” L-1011 aircraft. The total...
 
 

NASA selects student teams for high-powered rocket challenge

NASA has selected eight teams from middle and high schools across the country to participate in the 2014-2015 NASA Student Launch Challenge, April 7-12, organized by NASA’s Marshall Space Flight Center in Huntsville, Ala. The Student Launch Challenge engages students in a research-based, experiential exploration activity. Teams participating in the challenge must design, build and...
 

 

Northrop Grumman awarded advanced technology microwave sounder JPSS

Northrop Grumman has been awarded a $121 million contract by NASA to build and deliver the third Advanced Technology Microwave Sounder for NOAA’s Joint Polar Satellite System. ATMS provides critical atmospheric temperature and moisture profiles to support weather forecasting. The instrument has 22 channels spanning the frequency band from 23.8 GHz to 183.3 GHz. Under...
 
 
NASA photograph by Jim Yungel

NASA DC-8 continues west Antarctic ice study

NASA photograph by Jim Yungel The Thurston Island calving front off of western Antarctica as seen from the window of NASA’s DC-8 flying observatory Nov. 5, 2014. NASA’s DC-8 flying laboratory has two weeks of suppor...
 
 
NASA photograph by Emmett Given

NASA opens registration for 2015 Exploration Rover Challenge

NASA photograph by Emmett Given Pedaling across a simulated alien landscape of rock, craters and shifting sand is one of the nearly 90 teams of high school, college and university students from across the United States and arou...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>