Space

May 23, 2012

NASA’s wind tunnel aids SpaceX reusable launch system design

The first stage of the SpaceX Falcon 9 rocket is in the foreground, the second stage (background). The Falcon 9 rocket is responsible for launching the Dragon spacecraft.

NASA’s Marshall Space Flight Center in Huntsville, Ala., completed wind tunnel testing for Space Exploration Technologies of Hawthorn, Calif., to provide Falcon 9 first stage re-entry data for the company’s advanced reusable launch vehicle system.

Under a Reimbursable Space Act Agreement, Marshall conducted 176 runs in the wind tunnel test facility on the Falcon 9 first stage to provide SpaceX with test data that will be used to develop a re-entry database for the recovery of the Falcon 9 first stage. Tests were conducted at several orientations and speeds ranging from Mach numbers 0.3, or 228 miles per hour at sea level, to Mach 5, or 3,811 miles per hour at sea level, to gage how the first stage reacts during the descent phase of flight.

“Marshall’s aerodynamics team has vast experience in launch vehicle design and development and our wind tunnel offers an affordable, quick-turn solution to companies who are looking to generate aerodynamic test data on early launch vehicle design configurations,” said Teresa Vanhooser, manager of the Flight Programs and Partnerships Office at Marshall. “We believe that providing technical expertise enables development of new and innovative technologies that aid the industry as a whole and helps NASA to continue with our deep space exploration mission.”

Marshall’s Aerodynamic Research Facility’s 14-square-inch trisonic wind tunnel is an intermittent, blow-down tunnel that operates from high-pressure storage to either vacuum or atmospheric exhaust. The facility is capable of conducting tests in the subsonic, transonic, and supersonic mach ranges using its two interchangeable test sections. Subsonic Mach numbers are below Mach 1, the speed of sound, or 760 miles per hour at sea level, while transonic speeds approach and are slightly above Mach 1. The facility can achieve a maximum supersonic Mach number of 5, or five times the speed of sound.

In addition to wind tunnel testing, Marshall is providing propulsion engineering support to SpaceX in the development of the SuperDraco Launch Abort System and on-orbit propulsion systems. Marshall is supplying SpaceX with Reaction Control Systems lessons learned that will be incorporated into the Dragon spacecraft’s design for steering and attitude control. Marshall engineers also are providing technical insight in the development of materials and processes to support future improvements of the Falcon 9 and Dragon to be used in the SpaceX Commercial Crew Development Program.

“Since 2007, Marshall has supported the Commercial Orbital Transportation Services Program by providing engineering expertise and technical insight to aid our commercial partners in developing their transportation capabilities,” stated Vanhooser. “The Marshall Center has over 50 years of spaceflight experience and propulsion expertise to draw upon to help our commercial partners solve the complex challenges of space travel.”

Marshall has been engaged throughout the development in evaluating the Falcon 9 launch vehicle and Dragon spacecraft systems’ design under the Commercial Orbital Transportation Services Program led by the Johnson Space Center in Houston for the Human Exploration and Operations Mission Directorate (HEOMD) in Washington. The Marshall team supported various design reviews, flight readiness reviews, post-flight reviews and special studies.

The Marshall Center also provides SpaceX technical support as requested under the Commercial Crew Program led by the Kennedy Space Center for HEOMD. Engineers from the Marshall Center have been engaged with SpaceX by serving as the CCP launch vehicle systems lead and by providing discipline support to the partner integration teams.




All of this week's top headlines to your email every Friday.


 
 

 

Boeing concludes commercial crew space act agreement for CST-100/Atlas V

Boeing has successfully completed the final milestone of its Commercial Crew Integrated Capability Space Act Agreement with NASA. The work and testing completed under the agreement resulted in significant maturation of Boeing’s crew transportation system, including the CST-100 spacecraft and Atlas V rocket. NASA in July approved the Critical Design Review Board milestone for Boeing’...
 
 

NASA partners with leading technology innovators to enable future exploration

Recognizing that technology drives exploration, NASA has selected four teams of agency technologists for participation in the Early Career Initiative pilot program. The program encourages creativity and innovation among early career NASA technologists by engaging them in hands-on technology development opportunities needed for future missions. NASA’s Space Technology Mission Directorate c...
 
 

New commercial rocket descent data may help NASA with future Mars landings

NASA successfully captured thermal images of a SpaceX Falcon 9 rocket on its descent after it launched in September from Cape Canaveral Air Force Station, Fla. The data from these thermal images may provide critical engineering information for future missions to the surface of Mars. “Because the technologies required to land large payloads on Mars...
 

 
Image courtesy of NASA, J. Lotz, (STScI

NASA’s Hubble finds extremely distant galaxy through cosmic magnifying glass

Image courtesy of NASA, J. Lotz, (STScI The mammoth galaxy cluster Abell 2744 is so massive that its powerful gravity bends the light from galaxies far behind it, making these otherwise unseen background objects appear larger a...
 
 
NASA photograph

NASA TV to air Russian spacewalk from International Space Station

NASA photograph Expedition 41 Commander Max Suraev and Flight Engineer Alexander Samokutyaev of the Russian Federal Space Agency will don Orlan spacesuits and step outside the International Space Station Oct. 22, to perform wor...
 
 
Ball Aerospace photograph

Ball Aerospace green propellant infusion mission to host three DOD space experiments

Ball Aerospace photograph The NASA and Ball Aerospace & Technologies Corp. Green Propellant Infusion Mission (GPIM) will fly three Defense Department experimental hosted payloads when it launches in 2016. The NASA and Ball ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>