Space

May 23, 2012

NASA’s wind tunnel aids SpaceX reusable launch system design

The first stage of the SpaceX Falcon 9 rocket is in the foreground, the second stage (background). The Falcon 9 rocket is responsible for launching the Dragon spacecraft.

NASA’s Marshall Space Flight Center in Huntsville, Ala., completed wind tunnel testing for Space Exploration Technologies of Hawthorn, Calif., to provide Falcon 9 first stage re-entry data for the company’s advanced reusable launch vehicle system.

Under a Reimbursable Space Act Agreement, Marshall conducted 176 runs in the wind tunnel test facility on the Falcon 9 first stage to provide SpaceX with test data that will be used to develop a re-entry database for the recovery of the Falcon 9 first stage. Tests were conducted at several orientations and speeds ranging from Mach numbers 0.3, or 228 miles per hour at sea level, to Mach 5, or 3,811 miles per hour at sea level, to gage how the first stage reacts during the descent phase of flight.

“Marshall’s aerodynamics team has vast experience in launch vehicle design and development and our wind tunnel offers an affordable, quick-turn solution to companies who are looking to generate aerodynamic test data on early launch vehicle design configurations,” said Teresa Vanhooser, manager of the Flight Programs and Partnerships Office at Marshall. “We believe that providing technical expertise enables development of new and innovative technologies that aid the industry as a whole and helps NASA to continue with our deep space exploration mission.”

Marshall’s Aerodynamic Research Facility’s 14-square-inch trisonic wind tunnel is an intermittent, blow-down tunnel that operates from high-pressure storage to either vacuum or atmospheric exhaust. The facility is capable of conducting tests in the subsonic, transonic, and supersonic mach ranges using its two interchangeable test sections. Subsonic Mach numbers are below Mach 1, the speed of sound, or 760 miles per hour at sea level, while transonic speeds approach and are slightly above Mach 1. The facility can achieve a maximum supersonic Mach number of 5, or five times the speed of sound.

In addition to wind tunnel testing, Marshall is providing propulsion engineering support to SpaceX in the development of the SuperDraco Launch Abort System and on-orbit propulsion systems. Marshall is supplying SpaceX with Reaction Control Systems lessons learned that will be incorporated into the Dragon spacecraft’s design for steering and attitude control. Marshall engineers also are providing technical insight in the development of materials and processes to support future improvements of the Falcon 9 and Dragon to be used in the SpaceX Commercial Crew Development Program.

“Since 2007, Marshall has supported the Commercial Orbital Transportation Services Program by providing engineering expertise and technical insight to aid our commercial partners in developing their transportation capabilities,” stated Vanhooser. “The Marshall Center has over 50 years of spaceflight experience and propulsion expertise to draw upon to help our commercial partners solve the complex challenges of space travel.”

Marshall has been engaged throughout the development in evaluating the Falcon 9 launch vehicle and Dragon spacecraft systems’ design under the Commercial Orbital Transportation Services Program led by the Johnson Space Center in Houston for the Human Exploration and Operations Mission Directorate (HEOMD) in Washington. The Marshall team supported various design reviews, flight readiness reviews, post-flight reviews and special studies.

The Marshall Center also provides SpaceX technical support as requested under the Commercial Crew Program led by the Kennedy Space Center for HEOMD. Engineers from the Marshall Center have been engaged with SpaceX by serving as the CCP launch vehicle systems lead and by providing discipline support to the partner integration teams.




All of this week's top headlines to your email every Friday.


 
 

 
NASA/JPL-Caltech/Univ. of Arizona

NASA’s Opportunity Mars Rover finishes marathon

NASA/JPL-Caltech/Cornell Univ./USGS/Arizona State Univ. This illustration depicts some highlights along the route as NASA’s Mars Exploration Rover Opportunity drove as far as a marathon race during the first 11 years and ...
 
 
NASA/MSFC/Emmett Given

NASA announces teams for 2015 Human Exploration Rover Challenge

NASA/MSFC/Emmett Given Pedaling across a simulated alien landscape of rock, craters and shifting sand is one of the nearly 90 teams of high school, college and university students from across the United States and around the wo...
 
 
Air Force photograph by Joe Davila

F. E. Warren conducts Minuteman III missile test launch from Vandenberg

Air Force photograph by Joe Davila An unarmed LGM-30G Minuteman III intercontinental ballistic missile launches March 23, 2015, at Vandenberg Air Force Base, Calif. The missile was randomly selected from F. E. Warren AFB, Wyo.,...
 

 

NASA awards contract for NOAA’s Joint Polar Satellite System-2 spacecraft

NASA has awarded a delivery order under the Rapid Spacecraft Acquisition III (Rapid III) contract to Orbital ATK (formerly Orbital Sciences Corporation) of Dulles, Va., for the Joint Polar Satellite System (JPSS)-2 spacecraft. The JPSS-2 spacecraft will provide operational continuity of satellite-based observations to enable the National Oceanic and Atmospheric Administration to provide critica...
 
 
University of Colorado image

NASA spacecraft detects aurora, mysterious dust cloud around Mars

University of Colorado image Artistís conception of MAVENís Imaging UltraViolet Spectrograph (IUVS) observing the ìChristmas Lights Aurora” on Mars. MAVEN observations show that aurora on Mars is similar to Earthís &#...
 
 
NASA photograph

Space station crew returns to Earth, lands safely in Kazakhstan

NASA photograph They have landed! This message was posted to the center screen of the Russian Federal Space Agency’s Mission Control Center in Korolev, Russia, the moment confirmation was received that the Soyuz carrying ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>