Space

May 29, 2012

NASA funded research shows existence of reduced carbon on Mars

This 4.5 billion-year-old rock, labeled meteorite ALH84001, is one of 10 rocks from Mars in which researchers have found organic carbon compounds that originated on Mars without involvement of life. Organic carbon compounds are chemical ingredients for life, but can be created by non-biological processes as well as by biological processes. The report of finding Martian organic carbon in this and nine other meteorites was published in May 2012. This same meteorite, ALH84001, was earlier the subject of analysis that led to a report that it might contain fossils from Mars. That claim was subsequently strongly challenged. The rock is a portion of a meteorite that was dislodged from Mars by a huge impact about 16 million years ago and that fell to Earth in Antarctica approximately 13,000 years ago. The meteorite was found in Allan Hills ice field, Antarctica, by an annual expedition of the National Science Foundation’s Antarctic Meteorite Program in 1984. It is preserved for study at the Johnson Space Center’s Meteorite Processing Laboratory in Houston. The rock is about 3.5 inches (9 centimeters) across.

NASA-funded research on Mars meteorites that landed on Earth shows strong evidence that very large molecules contain carbon, which is a key ingredient for the building blocks of life, can originate on the Red Planet.

These macromolecules are not of biological origin, but they are indicators that complex carbon chemistry has taken place on Mars.

Researchers from the Carnegie Institution for Science in Washington who found reduced carbon molecules now have better insight into the chemical processes taking place on Mars. Reduced carbon is carbon that is bonded to hydrogen or itself. Their findings also may assist in future quests for evidence of life on the Red Planet. The findings are published in Thursday’s online edition of Science Express.

“These findings show that the storage of reduced carbon molecules on Mars occurred throughout the planet’s history and might have been similar to processes that occurred on the ancient Earth,” said Andrew Steele, lead author of the paper and researcher from Carnegie. “Understanding the genesis of these non-biological, carbon-containing macromolecules on Mars is crucial for developing future missions to detect evidence of life on our neighboring planet.”

Finding molecules containing large chains of carbon and hydrogen has been one objective of past and present Mars missions. Such molecules have been found previously in Mars meteorites, but scientists have disagreed about how the carbon in them was formed and whether it came from Mars. This new information proves Mars can produce organic carbon.

“Although this study has not yielded evidence that Mars has or once may have supported life, it does address some important questions about the sources of organic carbon on Mars,” said Mary Voytek, director of NASA’s Astrobiology Program at the agency’s Headquarters in Washington. “With the Curiosity rover scheduled to land in August, these new research results may help Mars Science Laboratory scientists fine-tune their investigations on the surface of the planet by understanding where organic carbon may be found and how it is preserved.”

Scientists have theorized that the large carbon macromolecules detected on Martian meteorites could have originated from terrestrial contamination from Earth or other meteorites, or chemical reactions or biological activity on Mars.

Steele’s team examined samples from 11 Martian meteorites from a period spanning about 4.2 billion years of Martian history. They detected large carbon compounds in 10 of them. The molecules were found inside grains of crystallized minerals.

Using an array of sophisticated research techniques, the team was able to show that at least some of the macromolecules of carbon were indigenous to the meteorites themselves and not contamination from Earth.

The team next looked at the carbon molecules in relation to other minerals in the meteorites to see what kinds of chemical processing these samples endured before arriving on Earth. The crystalline grains encasing the carbon compounds provided a window into how the carbon molecules were created. Their findings indicate that the carbon was created by volcanic activity on Mars and show that Mars has been doing organic chemistry for most of its history.

In a separate paper published by American Mineralogist, Steele and his team report their findings on the same meteorite announced in 1996 to contain possible — but subsequently discounted — relics of ancient biological life on Mars. Called ALH84001, the meteorite was found to also contain organic macromolecules of non-biological origin.

The Steele team’s research indicates that Mars does have a pool of reduced carbon. Their findings should help scientists involved in current and future Mars missions distinguish non-biologically formed carbon molecules from potential life.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines January 30, 2015

News: Taliban claims responsibility for attack on Americans at military base near airport - The Taliban claimed responsibility Jan. 30 for a shooting incident at a military base attached to Kabul’s international airport yesterday that killed three American civilian contractors and an Afghan national, saying the attacker had infiltrated the ranks of the security forces. Commission...
 
 

News Briefs January 30, 2015

Military judge weighs restrictions on Gitmo female guards A military judge is deciding whether to continue restricting the use of female guards at Guantanamo. Navy Capt. J. Kirk Waits heard closing arguments Jan. 29 at the base in Cuba during a pretrial hearing for Abd al-Hadi al-Iraqi. Waits didn’t say when he will rule. Hadi...
 
 
Air Force photograph by 1st Lt. Jake Bailey

Cope South experts exchange knowledge, techniques

Air Force photograph by 1st Lt. Jake Bailey TSgt. Sam Bishop, center left, and SSgt. Jeffrey Stephens discuss propeller maintenance with Bangladesh air force maintainers, from the 101st Special Flying Unit, during exercise Cope...
 

 

Air Force names 2-star to lead F-35 Integration Office

With the initial operating capability date of the F-35 Lightning II quickly approaching, the Air Force appointed Maj. Gen. Jeffrey Harrigian as the director of a larger Air Force F-35 Integration Office, Feb. 1. In addition to gaining new leadership, the F-35 Integration Office will also grow from a staff of four to 12 and...
 
 
boeing-ana2

Boeing announces ANA’s commitment to more jetliners

Airline continues fleet modernization with Boeing airplanes Boeing and All Nippon Airways announced Jan. 30 the airline’s intent to purchase three 787-10 Dreamliners to add additional flexibility to the airline’s 787 fleet....
 
 
Air Force photograph by Scott M. Ash

Air Force risks becoming too small to succeed under sequestration

Air Force photograph by Scott M. Ash Air Force Chief of Staff Gen. Mark A. Welsh III testifies before the Senate Armed Services Committee Jan. 28, 2015, in Washington, D.C., as Commandant of the Marine Corps Gen. Joesph F. Dunf...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>