Space

May 31, 2012

NASA begins development of Space Launch Flight software

Tags:

Marshall engineers Dan Mitchell, left, and Walter Robinson check out the SLS flight computer test beds which were recently delivered to Marshall by Boeing, the SLS Stages prime contractor.

NASA engineers working on the new Space Launch System can now begin developing the advanced, heavy-lift launch vehicle’s flight software using newly delivered software test bed computers from Boeing.

The SLS will launch NASA’s Orion spacecraft and provide an entirely new capability for human exploration beyond Earth’s orbit. Designed to be flexible for crew or cargo missions, SLS and Orion will be safe, affordable, sustainable and continue America’s journey of discovery from the unique vantage point of space.

“We are moving out very quickly on SLS,” said Todd May, Space Launch System Program manager at NASA’s Marshall Space Flight Center in Huntsville, Ala. “SLS will be the most powerful launch vehicle ever built, and it requires the most capable flight software in the history of human spaceflight. Having this avionics hardware in place early will allow the NASA SLS team and Boeing to accelerate the flight software development.”

Early delivery of SLS flight software will allow Marshall Center engineers, from left, Kurt Jackson, Ken King, Bob Linner and Paul Doyle to fine-tune the software.

The Boeing test bed computers make it possible for NASA to begin fine-tuning the launch vehicle’s software. The flight software then will be installed in the Software Integration Test Facility at Marshall and tested with other electrical hardware and software. In this facility, the SLS team can run a variety of simulations to evaluate how the vehicle will perform in space.

The final SLS flight computer that will run the flight software will have the highest processing capability available in a flight avionics computer. It is being developed by upgrading existing systems used in Global Positioning System and communication satellites.

The first test flight of the SLS is scheduled for 2017, for which the launch vehicle will be configured for a 70-metric ton lift capacity. An evolved, two-stage launch vehicle configuration will provide a lift capability of 130 metric tons to enable missions beyond Earth’s orbit and support deep space exploration.

The SLS software test bed computers were developed by Boeing and delivered to Marshall ahead of schedule. Availability of this test bed platform early in the engineering development phase allows more time for NASA programmers to develop the most capable flight software in the history of spaceflight.

Markeeva Morgan, left, and Walter Robinson integrate the software test beds into the laboratory at the Marshall Center.

Paul Doyle, right, Yvette Binford, center, and Ken King integrate and debug the SLS avionics software. After the Software Avionics team completes its work, the SLS flight software will be installed in Marshall’s Software Integration Test Facility for testing with other electrical hardware and software. In that facility, the SLS team can run a variety of mission profiles to evaluate how the vehicle performs in a real-time simulated environment.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 15, 2014

News: Navy identifies pilot presumed dead in crash - A Navy fighter pilot presumed dead after two fighter jets crashed in the far western Pacific Ocean has been identified.   Business: Boeing eyes 737-700 solution for new JSTARS - Boeing is officially planning a variant of its 737-700 commercial jetliner as a competitor for the Air Force’s...
 
 

News Briefs September 15, 2014

Australia contributing planes for anti-IS campaign Australia is preparing to contribute 600 troops and up to 10 military aircraft to the increasingly aggressive campaign against the Islamic State extremists in Syria and Iraq, Prime Minister Tony Abbott said Sept. 14. Abbott said Australia was responding to a formal request from the United States for specific...
 
 
Courtesy graphic

Lockheed Martin conducts flight tests of aircraft laser turret for DARPA

AFRL photograph The Aero-adaptive Aero-optic Beam Control turret that Lockheed Martin is developing for the Defense Advanced Research Projects Agency and the Air Force Research Laboratory has completed initial flight testing. T...
 

 

Lockheed Martin advances live, virtual, constructive training in flight test

https://www.youtube.com/watch?feature=player_embedded&v=jvXmOW8L3mU Lockheed Martin successfully tested a new solution for integrated live, virtual and constructive training during a flight demonstration at the company’s Aeronautics facility in Fort Worth, Texas. During the flight test, a pilot flying in a live F-16 engaged in a synthetic training exercise with a pilot flying as wing...
 
 
Image courtesy of NASA/JPL-Caltech/Univ. of Arizona

NASA’s Mars Curiosity rover arrives at Martian mountain

NASA’s Mars Curiosity rover has reached the Red Planet’s Mount Sharp, a Mount-Rainier-size mountain at the center of the vast Gale Crater and the rover mission’s long-term prime destination. “Curiosity n...
 
 

Raytheon begins full rate production on TALON Laser Guided Rockets

Under a $117 million contract awarded to Raytheon, Raytheon Missile Systems has begun production of the TALON Laser Guided Rocket. In 2013, the Armed Forces General Headquarters of the United Arab Emirates awarded Tawazun a contract to procure the TALON Laser Guided Rocket. “Full rate production of the TALON LGR is a significant milestone for...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>