Space

May 31, 2012

NASA begins development of Space Launch Flight software

Tags:

Marshall engineers Dan Mitchell, left, and Walter Robinson check out the SLS flight computer test beds which were recently delivered to Marshall by Boeing, the SLS Stages prime contractor.

NASA engineers working on the new Space Launch System can now begin developing the advanced, heavy-lift launch vehicle’s flight software using newly delivered software test bed computers from Boeing.

The SLS will launch NASA’s Orion spacecraft and provide an entirely new capability for human exploration beyond Earth’s orbit. Designed to be flexible for crew or cargo missions, SLS and Orion will be safe, affordable, sustainable and continue America’s journey of discovery from the unique vantage point of space.

“We are moving out very quickly on SLS,” said Todd May, Space Launch System Program manager at NASA’s Marshall Space Flight Center in Huntsville, Ala. “SLS will be the most powerful launch vehicle ever built, and it requires the most capable flight software in the history of human spaceflight. Having this avionics hardware in place early will allow the NASA SLS team and Boeing to accelerate the flight software development.”

Early delivery of SLS flight software will allow Marshall Center engineers, from left, Kurt Jackson, Ken King, Bob Linner and Paul Doyle to fine-tune the software.

The Boeing test bed computers make it possible for NASA to begin fine-tuning the launch vehicle’s software. The flight software then will be installed in the Software Integration Test Facility at Marshall and tested with other electrical hardware and software. In this facility, the SLS team can run a variety of simulations to evaluate how the vehicle will perform in space.

The final SLS flight computer that will run the flight software will have the highest processing capability available in a flight avionics computer. It is being developed by upgrading existing systems used in Global Positioning System and communication satellites.

The first test flight of the SLS is scheduled for 2017, for which the launch vehicle will be configured for a 70-metric ton lift capacity. An evolved, two-stage launch vehicle configuration will provide a lift capability of 130 metric tons to enable missions beyond Earth’s orbit and support deep space exploration.

The SLS software test bed computers were developed by Boeing and delivered to Marshall ahead of schedule. Availability of this test bed platform early in the engineering development phase allows more time for NASA programmers to develop the most capable flight software in the history of spaceflight.

Markeeva Morgan, left, and Walter Robinson integrate the software test beds into the laboratory at the Marshall Center.

Paul Doyle, right, Yvette Binford, center, and Ken King integrate and debug the SLS avionics software. After the Software Avionics team completes its work, the SLS flight software will be installed in Marshall’s Software Integration Test Facility for testing with other electrical hardware and software. In that facility, the SLS team can run a variety of mission profiles to evaluate how the vehicle performs in a real-time simulated environment.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 7, 2015

News: F-35 loses dogfight to fighter jet from 1980s – A new report alleges that an F-35A was defeated by the very aircraft it is meant to replace.   Business: South Korea selects Airbus for $1.33 billion tanker contract – European aerospace giant Airbus won a $1.33 billion deal June 30 to supply air refueling...
 
 
U.S. Chamber of Commerce photograph

Boeing, Embraer to collaborate on ecoDemonstrator technology tests

U.S. Chamber of Commerce photograph Frederico Curado, president & CEO of Embraer, and Marc Allen, president of Boeing International, at the Brazil-U.S. Business Summit in Washington, D.C. The event occurred during an offici...
 
 
Untitled-2

Tactical reconnaissance vehicle project eyes hoverbike for defense

The U.S. Army Research Laboratory, or ARL, has been exploring the tactical reconnaissance vehicle, or TRV, concept for nearly nine months and is evaluating the hoverbike technology as a way to get Soldiers away from ground thre...
 

 
Air Force photograph by SSgt. William Banton

Upgraded AWACS platform tested at Northern Edge

Air Force photograph by SSgt. William Banton Maintenance crew members prepare an E-3G Sentry (AWACS) for takeoff during exercise Northern Edge June 25, 2015. Roughly 6,000 airmen, soldiers, sailors, Marines and Coast Guardsmen ...
 
 
LM-Legion

Lockheed Martin’s Legion Pod™ takes to skies

Lockheed Martin photograph by Randy Crites Lockheed Martin’s Legion Pod recently completed its first flight test, successfully tracking multiple airborne targets while flying on an F-16 in Fort Worth, Texas. Legion Pod was in...
 
 
Air Force photograph by SSgt. Marleah Robertson

First Marine graduates Air Force’s F-35 intelligence course

Air Force photograph by SSgt. Marleah Robertson Marine Corps 1st Lt. Samuel Winsted, an F-35B Lightning II intelligence officer, provides a mock intelligence briefing to two instructors during the F-35 Intelligence Formal Train...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>