Tech

June 5, 2012

Army scientists energize battery research

Tags:
by David McNally
Adelphi, Md.

Army Research Laboratory scientist, is one of the inventors responsible for a 30-percent increase in energy density in lithium batteries.

Army scientists are squeezing more power from batteries by developing new methods and materials with incredible results.

“Our battery group has recently developed some new materials that could potentially increase the energy density of batteries by 30 percent,” said Cynthia Lundgren, electrochemical branch chief at the U.S. Army Research Laboratory.

This small group of scientists work on energy and power solutions for America’s soldiers.

“This 30 percent is actually quite a big deal. Typically improvements range about one percent a year with a few step changes,” Lundgren said.

For years, researchers studied how batteries work. They looked at how each component reacts with another. At high voltages batteries are extremely energetic systems.

Doctoral student Josh Allen (right) works with Army Research Laboratory scientist Arthur Cresce in the Electrochemistry Branch. Cresce is the co-inventor of an electrolyte additive with the potential to increase lithium battery energy density by 30 percent.

“There has never been a battery, a single cell, that operated at five volts,” Lundgren explained. “Through our understanding of that interface, we were able to design an additive that you add into the electrolyte that is somewhat of a sacrificial agent. It preferentially reacts with the electrode and forms a stable interface. Now the battery is able to operate at five volts.”

Scientists are calling the additive a major step forward. Since Army researchers Kang Xu and Arthur Cresce designed the substance two years ago, the lab has filed patent applications.

This is what you would call a quantum leap,” Cresce said. “We’ve gone from circling around a certain type of four volt energy for quite a while. All of a sudden a whole new class of batteries and voltages are open to us. The door is open that was closed before.”

Army research has the potential to reduce battery weight and allow soldiers to carry more ammunition or water.

“Our goal is to make things easier for the Soldier,” Lundgren said. “This research started because of the Army’s unique needs. There is a huge investment in batteries.”

In the future, Lundgren hopes they just don’t make better materials, but rather design new types of energy devices undreamt of today.

“We’re looking at designing systems to allow for ubiquitous energy – energy anywhere for the soldier using indigenous sources,” Lundgren said. “Some of our new programs are looking at how we may make fuel out of water. For instance, can we split water and make hydrogen to be used as fuel in a fuel cell or small engine?”

Lundgren said future advances will occur with the right resources.

“The laboratory gives us really good resources, but our highest value resource is our scientists,” she said. “We have an exceptional group of scientists here. We’ve been able to retain them. They have been sought after by many people. But, they’re ability to do good research here, research that can make a difference has allowed us to attract and retain really top talent.”

Emily Wikner, an Army Research Laboratory intern, assists in battery research. She will be a junior this year at Wake Forest University in Winston-Salem, N.C.




All of this week's top headlines to your email every Friday.


 
 

 
University of Rhode Island photograph by Tom Glennon

NASA kicks off field campaign to probe ocean ecology, carbon cycle

University of Rhode Island photograph by Tom Glennon The Research Vessel Endeavor is the floating laboratory that scientists will use for the ocean-going portion of the SABOR field campaign this summer. NASA embarks this week o...
 
 
NASA photograph by Carla Thomas

NASA’s high-flying laser altimeter to check out summer sea ice, more

NASA photograph by Carla Thomas This summer, the Multiple Altimeter Beam Experimental Lidar, or MABEL, will fly above Alaska and the Arctic Ocean on one of NASA’s ER-2 high-altitude aircraft. Sea ice in summer looks dramatica...
 
 
SOFIA

Outer space to inner space: SOFIA inside Lufthansa Technik hangar

NASA photograph by Jeff Doughty NASA’s Stratospheric Observatory for Infrared Astronomy is shown inside the Lufthansa Technik hangar in Hamburg, Germany where it is beginning its decadal inspection. Flight, aircraft maint...
 

 
NASA photograph by Tony Landis

New life for an old bird: NASA’s F-15B test bed gets new engines

NASA photograph NASA’s F-15B flight research test bed carries shuttle thermal insulation panels on its underbelly during a research flight in 2005. NASA Armstrong’s F-15B aeronautics research test bed, a workhorse at th...
 
 
NASA photograph by Tom Tschida

Towed glider benefits from center’s new 3-D printer capability

NASA photograph by Tom Tschida The major components of NASA Armstrong’s new high-resolution 3-D additive manufacturing printer occupy a shelf in the center’s subscale aircraft research lab. Robert “Red” ...
 
 
NASA photograph by Emmett Given

NASA completes testing on 3-D printer

NASA photograph by Emmett Given United Space Alliance engineer Cynthia Azzarita, left, and Boeing Company engineer Chen Deng, members of the Human Factors Integration Team at NASA’s Johnson Space Center, conduct a “...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>