Tech

June 5, 2012

Army scientists energize battery research

Tags:
by David McNally
Adelphi, Md.

Army Research Laboratory scientist, is one of the inventors responsible for a 30-percent increase in energy density in lithium batteries.

Army scientists are squeezing more power from batteries by developing new methods and materials with incredible results.

“Our battery group has recently developed some new materials that could potentially increase the energy density of batteries by 30 percent,” said Cynthia Lundgren, electrochemical branch chief at the U.S. Army Research Laboratory.

This small group of scientists work on energy and power solutions for America’s soldiers.

“This 30 percent is actually quite a big deal. Typically improvements range about one percent a year with a few step changes,” Lundgren said.

For years, researchers studied how batteries work. They looked at how each component reacts with another. At high voltages batteries are extremely energetic systems.

Doctoral student Josh Allen (right) works with Army Research Laboratory scientist Arthur Cresce in the Electrochemistry Branch. Cresce is the co-inventor of an electrolyte additive with the potential to increase lithium battery energy density by 30 percent.

“There has never been a battery, a single cell, that operated at five volts,” Lundgren explained. “Through our understanding of that interface, we were able to design an additive that you add into the electrolyte that is somewhat of a sacrificial agent. It preferentially reacts with the electrode and forms a stable interface. Now the battery is able to operate at five volts.”

Scientists are calling the additive a major step forward. Since Army researchers Kang Xu and Arthur Cresce designed the substance two years ago, the lab has filed patent applications.

This is what you would call a quantum leap,” Cresce said. “We’ve gone from circling around a certain type of four volt energy for quite a while. All of a sudden a whole new class of batteries and voltages are open to us. The door is open that was closed before.”

Army research has the potential to reduce battery weight and allow soldiers to carry more ammunition or water.

“Our goal is to make things easier for the Soldier,” Lundgren said. “This research started because of the Army’s unique needs. There is a huge investment in batteries.”

In the future, Lundgren hopes they just don’t make better materials, but rather design new types of energy devices undreamt of today.

“We’re looking at designing systems to allow for ubiquitous energy – energy anywhere for the soldier using indigenous sources,” Lundgren said. “Some of our new programs are looking at how we may make fuel out of water. For instance, can we split water and make hydrogen to be used as fuel in a fuel cell or small engine?”

Lundgren said future advances will occur with the right resources.

“The laboratory gives us really good resources, but our highest value resource is our scientists,” she said. “We have an exceptional group of scientists here. We’ve been able to retain them. They have been sought after by many people. But, they’re ability to do good research here, research that can make a difference has allowed us to attract and retain really top talent.”

Emily Wikner, an Army Research Laboratory intern, assists in battery research. She will be a junior this year at Wake Forest University in Winston-Salem, N.C.




All of this week's top headlines to your email every Friday.


 
 

 
afrl-sensors

Sensors Directorate co-sponsors autonomous aerial vehicle competition

Members from the University of Toledo, Ohio, team make adjustments to their multirotor aircraft prior to the autonomous aerial vehicle competition. The Air Force Research Laboratory Sensors Directorate hosted the event April 28...
 
 
NASA photograph by David C. Bowman

NASA’s Langley Research Center named Vertical Flight Heritage Site

NASA photograph by David C. Bowman In a May 8ceremony, NASA’s Langley Research Center in Hampton, Virginia, was formally designated a Vertical Flight Heritage Site by the American Helicopter Society (AHS) International. F...
 
 
NASA/Boeing image

NASA wraps up first green aviation tests on Boeing ecoDemonstrator

NASA/Boeing image NASA’s recent green aviation tests included the Active Flow Control Enhanced Vertical Tail Flight Experiment, for which 31 tiny devices called sweeping jet actuators were installed on the tail of a Boein...
 

 
onr-locust

LOCUST: Autonomous, swarming UAVs fly into the future

A new era in autonomy and unmanned systems for naval operations is on the horizon, as officials at the Office of Naval Research announced April 14 recent technology demonstrations of swarming unmanned aerial vehicles (UAVs) ...
 
 
NASA photograph by Ken Ulbrich

Second X-56A MUTT makes first flight

NASA photograph by Ken Ulbrich NASA researchers are using the X-56A, a low-cost, modular, remotely piloted aerial vehicle, to explore the behavior of lightweight, flexible aircraft structures. Researchers at NASA’s Armstrong ...
 
 
Air Force photograph by Rebecca Amber

Schaefer takes command of 412th Test Wing

Air Force photograph by Rebecca Amber Maj. Gen. Arnold Bunch Jr., Air Force Test Center commander (left), presents the 412th Test Wing guidon to Brig. Gen. Carl Schaefer signifying the beginning of his new command at the 412th ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>