Tech

June 5, 2012

Army scientists energize battery research

Tags:
by David McNally
Adelphi, Md.

Army Research Laboratory scientist, is one of the inventors responsible for a 30-percent increase in energy density in lithium batteries.

Army scientists are squeezing more power from batteries by developing new methods and materials with incredible results.

“Our battery group has recently developed some new materials that could potentially increase the energy density of batteries by 30 percent,” said Cynthia Lundgren, electrochemical branch chief at the U.S. Army Research Laboratory.

This small group of scientists work on energy and power solutions for America’s soldiers.

“This 30 percent is actually quite a big deal. Typically improvements range about one percent a year with a few step changes,” Lundgren said.

For years, researchers studied how batteries work. They looked at how each component reacts with another. At high voltages batteries are extremely energetic systems.

Doctoral student Josh Allen (right) works with Army Research Laboratory scientist Arthur Cresce in the Electrochemistry Branch. Cresce is the co-inventor of an electrolyte additive with the potential to increase lithium battery energy density by 30 percent.

“There has never been a battery, a single cell, that operated at five volts,” Lundgren explained. “Through our understanding of that interface, we were able to design an additive that you add into the electrolyte that is somewhat of a sacrificial agent. It preferentially reacts with the electrode and forms a stable interface. Now the battery is able to operate at five volts.”

Scientists are calling the additive a major step forward. Since Army researchers Kang Xu and Arthur Cresce designed the substance two years ago, the lab has filed patent applications.

This is what you would call a quantum leap,” Cresce said. “We’ve gone from circling around a certain type of four volt energy for quite a while. All of a sudden a whole new class of batteries and voltages are open to us. The door is open that was closed before.”

Army research has the potential to reduce battery weight and allow soldiers to carry more ammunition or water.

“Our goal is to make things easier for the Soldier,” Lundgren said. “This research started because of the Army’s unique needs. There is a huge investment in batteries.”

In the future, Lundgren hopes they just don’t make better materials, but rather design new types of energy devices undreamt of today.

“We’re looking at designing systems to allow for ubiquitous energy – energy anywhere for the soldier using indigenous sources,” Lundgren said. “Some of our new programs are looking at how we may make fuel out of water. For instance, can we split water and make hydrogen to be used as fuel in a fuel cell or small engine?”

Lundgren said future advances will occur with the right resources.

“The laboratory gives us really good resources, but our highest value resource is our scientists,” she said. “We have an exceptional group of scientists here. We’ve been able to retain them. They have been sought after by many people. But, they’re ability to do good research here, research that can make a difference has allowed us to attract and retain really top talent.”

Emily Wikner, an Army Research Laboratory intern, assists in battery research. She will be a junior this year at Wake Forest University in Winston-Salem, N.C.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by Carla Thomas

NASA, FAA, industry conduct initial sense-and-avoid test

NASA photograph by Carla Thomas NASA is using the remotely piloted Ikhana in the UAS-NAS project, one of the nation’s most important research efforts for improving safety and reducing technical barriers and operational challe...
 
 
nasa-spinoff

NASA Spinoff 2015 features space technology making life better on Earth

https://www.youtube.com/watch?feature=player_embedded&v=oWCWwEv_LcI&x-yt-ts=1421782837&x-yt-cl=84359240 NASA technologies are being used to locate underground water in some of the driest places on the Earth, buil...
 
 

NASA, Microsoft collaboration will allow scientists to ‘work on Mars’

NASA and Microsoft have teamed up to develop software called OnSight, a new technology that will enable scientists to work virtually on Mars using wearable technology called Microsoft HoloLens. Developed by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., OnSight will give scientists a means to plan and, along with the Mars Curiosity rover, conduct science...
 

 
NASA JPL image

NASA analysis: 11 trillion gallons to replenish California drought losses

NASA JPL image NASA satellite data reveal the severity of California’s drought on water resources across the state. This map shows the trend in water storage between September 2011 and September 2014. It will take about 11 tr...
 
 
NASA photograph by George Hale

NASA’s IceBridge Antarctic campaign wraps up

NASA photograph by George Hale A view from an IceBridge survey flight Nov. 3, 2014, showing a cloud’s shadow on crevassed Antarctic ice. NASA’s Operation IceBridge recently completed its 2014 Antarctic campaign, marking the...
 
 

NASA’s 2014 HS3 hurricane mission investigated four tropical cyclones

NASA photograph NASA’s Global Hawk takes off into the sunset after mission wrap-up at NASA Wallops and heads back to NASA Armstrong. NASA’s Hurricane and Severe Storms Sentinel, or HS3, mission investigated four tropical cyclones in the 2014 Atlantic Ocean hurricane season: Cristobal, Dolly, Edouard and Gonzalo. The storms affected land areas in the Atlantic...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>