Space

June 5, 2012

First SBIRS satellite exceeding performance expectations after one year in orbit

The first Lockheed Martin-built Space Based Infrared System geosynchronous satellite, launched May 7, 2011, is exceeding performance expectations and is on schedule to achieve operational certification later this year.

Date from the U.S. Air Force’s SBIRS GEO-1 satellite will enhance the military’s ability to detect missile launches around the globe, support the nation’s ballistic defense system, greatly expand technical intelligence gathering capabilities and bolster situational awareness for war fighters on the battlefield.

Within two months after launch, SBIRS began sharing initial GEO-1 satellite data. Some key performance measures reported by the Air Force include:

  • The GEO-1 sensors are detecting targets 25 percent dimmer than required with an intensity measurement that is 60 percent more accurate than specification.
  • The sensor pointing accuracy is nine times more precise than required.

“The outstanding performance trends seen to date gives us confidence heading into our extensive integrated developmental and operational testing campaign,” said Lt. Col. Ryan Umstattd, SBIRS lead for GEO-1 certification.

Interim mission performance results indicate that GEO-1 already demonstrates the ability to meet more than 90 percent of the Air Force Space Command’s performance requirements for operation use, and the remaining performance refinements are on track to be completed well before the satellite is fully certified for operations by U.S. Strategic Command later this year.

“SBIRS GEO-1 is performing exceptionally well and its data is providing tremendous value to the user community,” said Michael O’Hara, Lockheed Martin’s SBIRS Systems Engineering, Integration and Test director. “We are focuses on fully certifying this spacecraft for operational use and delivering a true national asset protecting our homeland, allies, war fighters and citizens for decades to come.”

SBIRS GEO-1 includes highly sophisticated scanning and staring sensors. The scanning sensor will provide a wide area surveillance of missile launches and natural phenomena across the earth, while the staring sensor will be tasked to observe smaller areas of interest with superior sensitivity. The GEO-1 satellite is already delivering data from both its scanning and staring sensors.

The SBIRS architecture features GEO satellites, payloads in highly elliptical earth orbit, and associated ground hardware and software. Lockheed Martin’s SBIRS contracts include four HEO payloads, four GEO satellites, and ground assets to command and spacecraft and receive, process and disseminate the infrared mission data. Two HEO payloads and the first geosynchronous satellite have already been launched.

The SBIRS team is led by the Infrared Space Systems Directorate at the U.S. Air Force Space and Missile Systems Center, Los Angeles Air Force Base, Calif. Lockheed Martin is the SBIRS prime contractor, Northrop Grumman is the payload integrator. Air Force Space Command operates the SBIRS system.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

NASA’s Orion Spacecraft powers through first integrated system testing

Lockheed Martin photograph Engineers in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, perform avionics testing on the Orion spacecraft being prepared for its first trip to space later this ye...
 
 

NASA’s Hubble extends stellar tape measure 10 times farther into space

Using NASA’s Hubble Space Telescope, astronomers now can precisely measure the distance of stars up to 10,000 light-years away – 10 times farther than previously possible. Astronomers have developed yet another novel way to use the 24-year-old space telescope by employing a technique called spatial scanning, which dramatically improves Hubble’s accuracy for making angular meas...
 
 
LM-AEHF

Fourth AEHF protected communications satellite begins integration months ahead of schedule

The fourth Advanced Extremely High Frequency satellite produced by Lockheed Martin is taking shape after early deliveries of its payload and propulsion core. AEHF-4, expected to launch in 2017, will enable the constellation to ...
 

 
nasa-telescope

NASA looks to go beyond batteries for space exploration

NASA is seeking proposals for the development of new, more capable, energy storage technologies to replace the battery technology that has long powered America’s space program. The core technologies solicited in the Wedne...
 
 

Near Infrared Camera Integrated into space telescope

Lockheed Martin and the University of Arizona have delivered the primary imaging instrument of the James Webb Space Telescope to NASA’s Goddard Space Flight Center. The new Near Infrared Camera, or NIRCam, has been successfully integrated within the heart of the telescope, known as the Integrated Science Instrument Module. The integration completes the suite of...
 
 

NASA awards robotics, vehicle, graphics simulation services contract

NASA has selected MacLean Engineering & Applied Technologies of Houston to provide simulation model development for organizations at the agency’s Johnson Space Center, also in Houston. This indefinite-delivery, indefinite-quantity contract has firm-fixed price and cost-plus fixed-fee task orders. Beginning July 1, the contract has a three-year base period followed by two one-year opt...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>