Space

June 5, 2012

First SBIRS satellite exceeding performance expectations after one year in orbit

The first Lockheed Martin-built Space Based Infrared System geosynchronous satellite, launched May 7, 2011, is exceeding performance expectations and is on schedule to achieve operational certification later this year.

Date from the U.S. Air Force’s SBIRS GEO-1 satellite will enhance the military’s ability to detect missile launches around the globe, support the nation’s ballistic defense system, greatly expand technical intelligence gathering capabilities and bolster situational awareness for war fighters on the battlefield.

Within two months after launch, SBIRS began sharing initial GEO-1 satellite data. Some key performance measures reported by the Air Force include:

  • The GEO-1 sensors are detecting targets 25 percent dimmer than required with an intensity measurement that is 60 percent more accurate than specification.
  • The sensor pointing accuracy is nine times more precise than required.

“The outstanding performance trends seen to date gives us confidence heading into our extensive integrated developmental and operational testing campaign,” said Lt. Col. Ryan Umstattd, SBIRS lead for GEO-1 certification.

Interim mission performance results indicate that GEO-1 already demonstrates the ability to meet more than 90 percent of the Air Force Space Command’s performance requirements for operation use, and the remaining performance refinements are on track to be completed well before the satellite is fully certified for operations by U.S. Strategic Command later this year.

“SBIRS GEO-1 is performing exceptionally well and its data is providing tremendous value to the user community,” said Michael O’Hara, Lockheed Martin’s SBIRS Systems Engineering, Integration and Test director. “We are focuses on fully certifying this spacecraft for operational use and delivering a true national asset protecting our homeland, allies, war fighters and citizens for decades to come.”

SBIRS GEO-1 includes highly sophisticated scanning and staring sensors. The scanning sensor will provide a wide area surveillance of missile launches and natural phenomena across the earth, while the staring sensor will be tasked to observe smaller areas of interest with superior sensitivity. The GEO-1 satellite is already delivering data from both its scanning and staring sensors.

The SBIRS architecture features GEO satellites, payloads in highly elliptical earth orbit, and associated ground hardware and software. Lockheed Martin’s SBIRS contracts include four HEO payloads, four GEO satellites, and ground assets to command and spacecraft and receive, process and disseminate the infrared mission data. Two HEO payloads and the first geosynchronous satellite have already been launched.

The SBIRS team is led by the Infrared Space Systems Directorate at the U.S. Air Force Space and Missile Systems Center, Los Angeles Air Force Base, Calif. Lockheed Martin is the SBIRS prime contractor, Northrop Grumman is the payload integrator. Air Force Space Command operates the SBIRS system.




All of this week's top headlines to your email every Friday.


 
 

 
LM-MUOS

U.S. Navy, Lockheed Martin ready to launch MUOS-4 Aug. 31

The U.S. Navy and Lockheed Martin are ready to launch the fourth Mobile User Objective System secure communications satellite, MUOS-4, from Cape Canaveral Air Force Station, Fla., Aug. 31 aboard a United Launch Alliance Atlas V...
 
 

NASA seeks proposals for extreme environment solar arrays

NASA’s space technology program is seeking proposals to develop solar array systems for space power in high radiation and low solar energy environments. In the near future, NASA will need solar cells and arrays for multiple applications in robotic and human space exploration missions. Because these systems were traditionally developed for operation near Earth, there...
 
 

NASA awards contract for construction of new mission launch command center

NASA has awarded a contract to Harkins Contracting Inc. of Salisbury, Maryland, for the construction of a new Mission Launch Command Center at the agency’s Wallops Flight Facility in Wallops Island, Va. The new 14,174 square-foot facility will serve as the hub for interfacing with and controlling rockets, their payloads and associated launch pad support...
 

 
NASA photograph

NASA concludes series of engine tests for next-gen rocket

NASA photograph The RS-25 engine fires up for a 535-second test Aug. 27, 2015 at NASA’s Stennis Space Center near Bay St. Louis, Miss. This is the final in a series of seven tests for the development engine, which will pr...
 
 
LM-satellite

Lockheed Martin makes tiny satellite cooling system

Lockheed Martin scientists are packing three times the power density into a key satellite cooling system whose previous design is already the lightest in its class. This project continues the company’s effort to reduce co...
 
 
Northrop Grumman photograph by Bob Brown

Northrop Grumman delivers telescope structure for James Webb Space Telescope

Northrop Grumman photograph by Bob Brown Northrop Grumman employees preparing the telescope structure, for NASA’s James Webb Space Telescope for shipment to Goddard Space Flight Center in Greenbelt, Md. REDONDO BEACH, Cal...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>