Space

June 5, 2012

First SBIRS satellite exceeding performance expectations after one year in orbit

The first Lockheed Martin-built Space Based Infrared System geosynchronous satellite, launched May 7, 2011, is exceeding performance expectations and is on schedule to achieve operational certification later this year.

Date from the U.S. Air Force’s SBIRS GEO-1 satellite will enhance the military’s ability to detect missile launches around the globe, support the nation’s ballistic defense system, greatly expand technical intelligence gathering capabilities and bolster situational awareness for war fighters on the battlefield.

Within two months after launch, SBIRS began sharing initial GEO-1 satellite data. Some key performance measures reported by the Air Force include:

  • The GEO-1 sensors are detecting targets 25 percent dimmer than required with an intensity measurement that is 60 percent more accurate than specification.
  • The sensor pointing accuracy is nine times more precise than required.

“The outstanding performance trends seen to date gives us confidence heading into our extensive integrated developmental and operational testing campaign,” said Lt. Col. Ryan Umstattd, SBIRS lead for GEO-1 certification.

Interim mission performance results indicate that GEO-1 already demonstrates the ability to meet more than 90 percent of the Air Force Space Command’s performance requirements for operation use, and the remaining performance refinements are on track to be completed well before the satellite is fully certified for operations by U.S. Strategic Command later this year.

“SBIRS GEO-1 is performing exceptionally well and its data is providing tremendous value to the user community,” said Michael O’Hara, Lockheed Martin’s SBIRS Systems Engineering, Integration and Test director. “We are focuses on fully certifying this spacecraft for operational use and delivering a true national asset protecting our homeland, allies, war fighters and citizens for decades to come.”

SBIRS GEO-1 includes highly sophisticated scanning and staring sensors. The scanning sensor will provide a wide area surveillance of missile launches and natural phenomena across the earth, while the staring sensor will be tasked to observe smaller areas of interest with superior sensitivity. The GEO-1 satellite is already delivering data from both its scanning and staring sensors.

The SBIRS architecture features GEO satellites, payloads in highly elliptical earth orbit, and associated ground hardware and software. Lockheed Martin’s SBIRS contracts include four HEO payloads, four GEO satellites, and ground assets to command and spacecraft and receive, process and disseminate the infrared mission data. Two HEO payloads and the first geosynchronous satellite have already been launched.

The SBIRS team is led by the Infrared Space Systems Directorate at the U.S. Air Force Space and Missile Systems Center, Los Angeles Air Force Base, Calif. Lockheed Martin is the SBIRS prime contractor, Northrop Grumman is the payload integrator. Air Force Space Command operates the SBIRS system.




All of this week's top headlines to your email every Friday.


 
 

 
nasa-commercial-crew

Commercial Crew milestones met; partners on track for 2017 missions

NASA has taken another step toward returning America’s ability to launch crew missions to the International Space Station from the United States in 2017. The Commercial Crew Program ordered its first crew rotation mission fro...
 
 
boeing-space

Boeing awarded first-ever commercial human spaceflight mission

NASA issued a task order as part of Boeing’s $4.2 billion Commercial Crew Transportation Capability contract recently to include the company’s first-ever service flight to the International Space Station. The award ...
 
 
Photograph courtesy of NASA/JPL-Caltech

NASA’s Europa mission begins with selection of science instruments

Photograph courtesy of NASA/JPL-Caltech Bizarre features on Europa’s icy surface suggest a warm interior. This view of the surface of Jupiter’s moon Europa was obtained by NASA’s Galileo mission, and shows a color...
 

 
Photograph courtesy of NASA/JPL-Caltech/Lockheed Martin

NASA begins testing Mars lander in preparation for next mission to Red Planet

Photograph courtesy of NASA/JPL-Caltech/Lockheed Martin Engineers and technicians at Lockheed Martin Space Systems, Denver, run a test of deploying the solar arrays on NASA’s InSight lander. Photo taken April 30, 2015. Te...
 
 
Image courtesy of NASA/JPL-Caltech

NASA’s WISE spacecraft discovers most luminous galaxy in universe

Image courtesy of NASA/JPL-Caltech This artist’s concept depicts the current record holder for the most luminous galaxy in the universe. The galaxy, WISE J224607.57-052635.0, is erupting with light equal to more than 300 ...
 
 

Air Force launches hush-hush mini-shuttle into space

A mysterious space plane rocketed into orbit May 20, carrying no crew but a full load of technology experiments. The Air Force launched its unmanned mini-shuttle late morning, May 20. An Atlas V rocket lifted it up and out over the Atlantic. This is the fourth flight for the military research program, which is shrouded...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>