Tech

June 7, 2012

ICECool to crack thermal management barrier, enable breakthrough electronics

The continued miniaturization and the increased density of components in today’s electronics have pushed heat generation and power dissipation to unprecedented levels.

Current thermal management solutions, usually involving remote cooling, are unable to limit the temperature rise of today’s complex electronic components.

Such remote cooling solutions, where heat must be conducted away from components before rejection to the air, add considerable weight and volume to electronic systems. The result is complex military systems that continue to grow in size and weight due to the inefficiencies of existing thermal management hardware.

Recent advances of the DARPA Thermal Management Technologies program enable a paradigm shift-better thermal management. DARPA’s Intrachip/Interchip Enhanced Cooling (ICECool) program seeks to crack the thermal management barrier and overcome the limitations of remote cooling. ICECool will explore ‘embedded’ thermal management by bringing microfluidic cooling inside the substrate, chip or package by including thermal management in the earliest stages of electronics design.

“Think of current electronics thermal management methods as the cooling system in your car,” said Avram Bar-Cohen, DARPA program manager. “Water is pumped directly through the engine block and carries the absorbed heat through hoses back to the radiator to be cooled. By analogy, ICECool seeks technologies that would put the cooling fluid directly into the electronic ‘engine’. In DARPA’s case this embedded cooling comes in the form of microchannels designed and built directly into chips, substrates and/or packages as well as research into the thermal and fluid flow characteristics of such systems at both small and large scales.”

The ICECool Fundamentals solicitation released today seeks proposals to research and demonstrate the microfabrication and evaporative cooling techniques needed to implement embedded cooling. Proposals are sought for intrachip/interchip solutions that bring microchannels, micropores, etc. into the design and fabrication of chips. Interchip solutions for chip stacks are also sought.

“Thermal management is key for advancing Defense electronics,” said Thomas Lee, director, Microsystems Technology Office. “Embedded cooling may allow for smaller electronics, enabling a more mobile, versatile force. Reduced thermal resistance would improve performance of DOD electronics and may result in breakthrough capabilities we cannot yet envision.”




All of this week's top headlines to your email every Friday.


 
 

 
afrl-sensors

Sensors Directorate co-sponsors autonomous aerial vehicle competition

Members from the University of Toledo, Ohio, team make adjustments to their multirotor aircraft prior to the autonomous aerial vehicle competition. The Air Force Research Laboratory Sensors Directorate hosted the event April 28...
 
 
NASA photograph by David C. Bowman

NASA’s Langley Research Center named Vertical Flight Heritage Site

NASA photograph by David C. Bowman In a May 8ceremony, NASA’s Langley Research Center in Hampton, Virginia, was formally designated a Vertical Flight Heritage Site by the American Helicopter Society (AHS) International. F...
 
 
NASA/Boeing image

NASA wraps up first green aviation tests on Boeing ecoDemonstrator

NASA/Boeing image NASA’s recent green aviation tests included the Active Flow Control Enhanced Vertical Tail Flight Experiment, for which 31 tiny devices called sweeping jet actuators were installed on the tail of a Boein...
 

 
onr-locust

LOCUST: Autonomous, swarming UAVs fly into the future

A new era in autonomy and unmanned systems for naval operations is on the horizon, as officials at the Office of Naval Research announced April 14 recent technology demonstrations of swarming unmanned aerial vehicles (UAVs) ...
 
 
NASA photograph by Ken Ulbrich

Second X-56A MUTT makes first flight

NASA photograph by Ken Ulbrich NASA researchers are using the X-56A, a low-cost, modular, remotely piloted aerial vehicle, to explore the behavior of lightweight, flexible aircraft structures. Researchers at NASA’s Armstrong ...
 
 
Air Force photograph by Rebecca Amber

Schaefer takes command of 412th Test Wing

Air Force photograph by Rebecca Amber Maj. Gen. Arnold Bunch Jr., Air Force Test Center commander (left), presents the 412th Test Wing guidon to Brig. Gen. Carl Schaefer signifying the beginning of his new command at the 412th ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>