Space

June 7, 2012

NASA’s Spitzer finds first objects burned furiously

The faint, lumpy glow from the very first objects in the universe may have been detected with the best precision yet using NASA’s Spitzer Space Telescope.

The objects could be wildly massive stars or voracious black holes. They are too far away to be seen individually, but Spitzer has captured new, convincing evidence of what appears to be the collective pattern of their infrared light.

The observations help confirm the first objects were numerous in quantity and furiously burned cosmic fuel.

“These objects would have been tremendously bright,” said Alexander “Sasha” Kashlinsky of NASA’s Goddard Space Flight Center in Greenbelt, Md., lead author of a new paper appearing in The Astrophysical Journal. “We can’t yet directly rule out mysterious sources for this light that could be coming from our nearby universe, but it is now becoming increasingly likely that we are catching a glimpse of an ancient epoch. Spitzer is laying down a roadmap for NASA’s upcoming James Webb Telescope, which will tell us exactly what and where these first objects were.”

Spitzer first caught hints of this remote pattern of light, known as the cosmic infrared background, in 2005, and again with more precision in 2007. Now, Spitzer is in the extended phase of its mission, during which it performs more in-depth studies on specific patches of the sky. Kashlinsky and his colleagues used Spitzer to look at two patches of sky for more than 400 hours each.

The team then carefully subtracted all of the known stars and galaxies in the images. Rather than being left with a black, empty patch of sky, they found faint patterns of light with several telltale characteristics of the cosmic infrared background. The lumps in the pattern observed are consistent with the way the very distant objects are thought to be clustered together.

Kashlinsky likens the observations to looking for Fourth of July fireworks in New York City from Los Angeles. First, you would have to remove all the foreground lights between the two cities, as well as the blazing lights of New York City itself. You ultimately would be left with a fuzzy map of how the fireworks are distributed, but they would still be too distant to make out individually.

“We can gather clues from the light of the universe’s first fireworks,” said Kashlinsky. “This is teaching us that the sources, or the “sparks,” are intensely burning their nuclear fuel.”

The universe formed roughly 13.7 billion years ago in a fiery, explosive Big Bang. With time, it cooled and, by around 500 million years later, the first stars, galaxies and black holes began to take shape. Astronomers say some of that “first light” may have traveled billions of years to reach the Spitzer Space Telescope. The light would have originated at visible or even ultraviolet wavelengths and then, because of the expansion of the universe, stretched out to the longer, infrared wavelengths observed by Spitzer.

The new study improves on previous observations by measuring this cosmic infrared background out to scales equivalent to two full moons – significantly larger than what was detected before. Imagine trying to find a pattern in the noise in an old-fashioned television set by looking at just a small piece of the screen. It would be hard to know for certain if a suspected pattern was real. By observing a larger section of the screen, you would be able to resolve both small- and large-scale patterns, further confirming your initial suspicion.

Likewise, astronomers using Spitzer have increased the amount of the sky examined to obtain more definitive evidence of the cosmic infrared background. The researchers plan to explore more patches of sky in the future to gather more clues hidden in the light of this ancient era.

“This is one of the reason’s we are building the James Webb Space Telescope,” said Glenn Wahlgren, Spitzer program scientist at NASA Headquarters in Washington. “Spitzer is giving us tantalizing clues, but James Webb will tell us what really lies at the era where stars first ignited.”

Other authors are Richard Arendt of Goddard and the University of Maryland in Baltimore; Matt Ashby and Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass.; and John Mather and Harvey Moseley of Goddard. Fazio led the initial observations of these sky fields.

NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for the agency’s Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology (Caltech) in Pasadena. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines May 20, 2015

News: Top secret X-37B space plane blasts off on fourth mission - One of the most mysterious craft ever to go into orbit blasted off on a top secret mission this morning.   Business: R&D budget request rises for U.S. Special Operations - The leadership of U.S. Special Operations Command said the force and its acquisitions –...
 
 

News Briefs May 20, 2015

North Korea ‘many years’ from developing submarine missile A top U.S. military officer says North Korea is many years away from being able to launch ballistic missiles from a submarine. But vice chairman of the U.S. Joint Chiefs of Staff, Adm. James Winnefeld, said May 19 such missiles could eventually present a hard-to-detect danger to...
 
 
Boeing photograph

Boeing-upgraded French AWACS take flight

Boeing photograph A French AWACS aircraft patrols the skies as part of a routine mission. The French AWACS fleet is in the midst of the Mid-Life Upgrade that modernizes the capabilities on board. Initial operating capability of...
 

 
CAE photograph

MH-60R FMS team supports Royal Australian Navy

CAE photograph A military representative ìfliesî the MH-60R Seahawk tactical operational flight trainer over Sydney, Australia, during a recent simulation event. In February, the Royal Australian Navy procured a trainer, simi...
 
 
boeing-E4B

Boeing returns Air Force E-4B aircraft to service ahead of schedule

Boeing recently completed maintenance on a U.S. Air Force E-4B advanced airborne command post earlier than planned, enabling the Air Force to quickly return the vital aircraft to operational service. It was the first E-4B servi...
 
 
Photograph by Linda KC Reynolds

Olympic Athletes make it special for everyone

A Special Olympics athlete is presented a medal by TSgt. Roger Rouse, assistant NCOIC at F-35 Avionics. More than 300 athletes and 80 military personnel participated in the event at Palmdale High School. Sincerely appreciated, ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>