Space

June 11, 2012

NASA Mars rover team aims for landing closer to prime science site

NASA has narrowed the target for its most advanced Mars rover, Curiosity, which will land on the Red Planet in August.

The car-sized rover will arrive closer to its ultimate destination for science operations, but also closer to the foot of a mountain slope that poses a landing hazard.

“We’re trimming the distance we’ll have to drive after landing by almost half,” said Pete Theisinger, Mars Science Laboratory project manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “That could get us to the mountain months earlier.”

It was possible to adjust landing plans because of increased confidence in precision landing technology aboard the MSL spacecraft, which is carrying the rover. That spacecraft can aim closer without hitting Mount Sharp at the center of Gale crater. Rock layers located in the mountain are the prime location for research with the rover.

Curiosity is scheduled to land at approximately 10:31 p.m., PDT, Aug. 5. Following checkout operations, Curiosity will begin a 2-year study of whether the landing vicinity ever offered an environment favorable for microbial life.

Theisinger and other mission leaders described the target adjustment during a June 11 update to reporters Monday about preparations for landing and for operating Curiosity on Mars.

The landing target ellipse had been an ellipse approximately 12 miles wide and 16 miles long. Continuing analysis of the new landing system’s capabilities has allowed mission planners to shrink the area to approximately 4 miles wide and 12 miles long, assuming winds and other atmospheric conditions as predicted.

Even with the smaller ellipse, Curiosity will be able to touch down at a safe distance from steep slopes at the edge of Mount Sharp.

“We have been preparing for years for a successful landing by Curiosity, and all signs are good,” said Dave Lavery, MSL program executive. “However, landing on Mars always carries risks, so success is not guaranteed. Once on the ground we’ll proceed carefully. We have plenty of time since Curiosity is not as life-limited as the approximate 90-day missions like NASA’s Mars Exploration Rovers and the Phoenix lander.”

Since the spacecraft was launched in November 2011, engineers have continued testing and improving its landing software. MSL will use an upgraded version of flight software installed on its computers during the past two weeks. Additional upgrades for Mars surface operations will be sent to the rover about a week after landing.

Other preparations include upgrades to the rover’s software and understanding effects of debris coming from the drill the rover will use to collect samples from rocks on Mars. Experiments at JPL indicate that Teflon from the drill could mix with the powdered samples. Testing will continue past landing with copies of the drill. The rover will deliver the samples to onboard instruments that can identify mineral and chemical ingredients.

“The material from the drill could complicate, but will not prevent analysis of carbon content in rocks by one of the rover’s 10 instruments. There are workarounds,” said John Grotzinger, MSL project scientist at the California Institute of Technology in Pasadena. “Organic carbon compounds in an environment are one prerequisite for life. We know meteorites deliver non-biological organic carbon to Mars, but not whether it persists near the surface. We will be checking for that and for other chemical and mineral clues about habitability.”

Curiosity will be in good company as it nears landing. Two NASA Mars orbiters along with a European Space Agency orbiter will be in position to listen to radio transmissions as MSL descends through Mars’ atmosphere.

The mission is managed by JPL for NASA’s Science Mission Directorate in Washington. Curiosity was designed, developed and assembled at JPL.

Follow the mission on Facebook and Twitter at http://www.facebook.com/marscuriosity and http://www.twitter.com/marscuriosity.




All of this week's top headlines to your email every Friday.


 
 

 
APL/NASA photograph

NASA probes studying Earth’s radiation belts celebrate two year anniversary

APL/NASA photograph This image was created using data from the Relativistic Electron-Proton Telescopes on NASA’s twin Van Allen Probes. It shows the emergence of a new third transient radiation belt. The new belt is seen ...
 
 
NASA photograph by David Olive

NASA completes successful battery of tests on composite cryotank

https://www.youtube.com/embed/qkGI6JeNY0E?enablejsapi=1&rel=0 NASA photograph by David Olive One of the largest composite cryotanks ever built recently completed a battery of tests at NASA’s Marshall Space Flight Cen...
 
 
NASA/MSFC image

NASA completes key review of world’s most powerful rocket

NASA/MSFC image Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimate...
 

 
Image courtesy of NASA, Z. Levay, G. Bacon (STScI)

NASA telescopes uncover early construction of giant galaxy

Image courtesy of NASA, Z. Levay, G. Bacon (STScI) Artist impression of a firestorm of star birth deep inside core of young, growing elliptical galaxy. Astronomers have for the first time caught a glimpse of the earliest stages...
 
 

Lockheed Martin, Electro Optic Systems to establish space debris tracking site

Under a new strategic cooperation agreement, Lockheed Martin and Electro Optic Systems Pty Ltd are developing a new space object tracking site in Western Australia that will paint a more detailed picture of space debris for both government and commercial customers. The site will use a combination of lasers and sensitive optical systems like those...
 
 

NASA awards research facilities, engineering support services contract

NASA has awarded a contract for research facilities and engineering support services to InuTeq, LLC of Greenbelt, Maryland, in support of the Mission Information and Test Systems Directorate at NASA’s Armstrong Flight Research Center, Edwards, Calif. This cost-plus-award-fee contract covers a one-year base period beginning Nov. 1, 2014 and four one-year options, and is valued...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>