Business

June 13, 2012

Lockheed Martin delivers flight hardware for NASA’s Magnetospheric Multiscale Mission

Engineers and scientists at the Lockheed Martin Space Systems Advanced Technology Center, Palo Alto, Calif., have completed delivery of key hardware subsystems for NASA’s Magnetospheric Multiscale mission.

The delivery comprised four flight subsystems and one flight spare unit. The prime contractor Southwest Research Institute partnered with Lockheed Martin to develop and build the Hot Plasma Composition Analyzer as part of the MMS instrument suite.

When it launches in 2014, the MMS mission will provide unprecedented insights into a little-understood physical process at the heart of all space weather. This process, known as magnetic reconnection, sparks solar flares, coronal mass ejections, and other phenomena that can imperil Earth-orbiting spacecraft and terrestrial power grids. High-resolution data from MMS will provide researchers much greater clarity into the mechanisms involved in magnetic reconnection and associated phenomena.

“Magnetic reconnection at the Earth’s magnetopause is the mechanism by which magnetic fields in different regions – in this case, from the Interplanetary Magnetic Field carried by the solar wind, and the Earth’s magnetic field – change topology to open magnetospheric field lines. This connection allows energy and momentum to flow from the solar wind into the magnetosphere,” said Dr. Karlheinz Trattner, Lockheed Martin ATC space plasma physicist, and co-investigator on MMS.

The MMS mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of magnetic reconnection and two other fundamental plasma processes: energetic particle acceleration, and turbulence. These processes have implications for many space science research areas since they occur in all astrophysical plasma systems but can be studied in situ only in our solar system and most efficiently only in Earth’s magnetosphere, where they control the dynamics of the geospace environment and play a significant role in space weather.

The four satellites of the MMS mission will be deployed in an orbit to skim the boundary layer between the magnetosphere and the interplanetary magnetic field where magnetic reconnection is known to exist. The MMS spacecraft are being developed at NASA’s Goddard Space Flight Center in Greenbelt, Md. GSFC is also responsible for the overall management of the MMS mission and mission operations.

The ATC is the research and development organization of Lockheed Martin Space Systems Company and creates the technology foundation for the company’s business. In addition, the ATC conducts basic research into understanding and predicting space weather and the behavior of our Sun, including its impacts on Earth and climate. It has a five-decade-long heritage of spaceborne instruments.




All of this week's top headlines to your email every Friday.


 
 

 
boeing-avianco

Boeing, Avianca celebrate delivery of airline’s first 787 Dreamliner

Boeing and Avianca have celebrated the delivery of the first 787 Dreamliner for the Latin American carrier, helping the airline stay at the forefront of technology in the region. “The addition of the first Boeing 787-8 to...
 
 
boeing-boc-737

Boeing, BOC Aviation finalize order for two additional 737-800s

Boeing and BOC Aviation have finalized an order for two additional 737-800s, valued at $186 million at current list prices. The order is a part of the Singapore-based leasing company’s effort to grow its portfolio of fuel...
 
 

Northrop Grumman names chief compliance officer

Northrop Grumman has named Carl Hahn vice president, chief compliance officer, effective Jan. 15, 2015. Hahn is succeeding Judy Perry Martinez, who will be retiring, and will report to Sheila C. Cheston, corporate vice president and general counsel. “Carl brings to his role at Northrop Grumman a tremendous breadth of experience in global compliance, investigations...
 

 

GPS modernization advances as eighth Boeing GPS IIF becomes sctive

EL SEGUNDO, Calif. ñ The eighth Boeing Global Positioning System IIF satellite has completed on-orbit checkout and joined the active 31-satellite constellation, helping the U.S. Air Force continue modernizing the network that millions of people worldwide use. The Air Force and Boeing have now put four GPS-IIF satellites into service this year, adding to the...
 
 
GPS-OCX

GPS III, OCX successfully demonstrate key satellite command, control capabilities

Lockheed Martin and Raytheon successfully completed the fourth of five planned launch and early orbit exercises to demonstrate new automation capabilities, information assurance and launch readiness of the worldís most powerfu...
 
 

Aerojet Rocketdyne successfully demonstrates 3D printed rocket propulsion system for satellites

Aerojet Rocketdyne has successfully completed a hot-fire test of its MPS-120 CubeSat High-Impulse Adaptable Modular Propulsion System. The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>