Business

June 18, 2012

Lockheed Martin completes environmental testing on second Navy satellite

Lockheed Martin has successfully completed thermal vacuum testing of the U.S. Navy’s second Mobile User Objective System satellite, designated MUOS-2.

Completion of this major program milestone validates performance in a simulated space environment and clears the satellite for final integrated system test.

“With the completion of environmental testing, the MUOS team has illustrated its continued focus on successful program execution and mission success,” said Lockheed Martin’s Global Communications Systems vice president and general manager, Kevin Bilger. “The first MUOS satellite is on-orbit and poised to provide significantly improved communications capabilities for the mobile warfighter. This team looks forward to expanding MUOS capabilities with the launch of the second satellite in the constellation.”

Conducted inside Lockheed Martin’s Dual Entry Large Thermal Altitude chamber, the MUOS-2 satellite was stressed at extreme hot and cold temperatures, simulating the environments the satellite will experience throughout its mission life. The extensive test-like-you-fly process validates the satellite’s overall design and survivability during launch and on-orbit operations.

“Building on the success of the first MUOS satellite, the team completed this critical test phase efficiently and affordably to support our customer’s launch schedule,” said Mark Pasquale, Lockheed Martin vice president and MUOS program manager. “Our team is on track to successfully complete final satellite integration and test this fall.”

The five-satellite MUOS constellation will revolutionize military Ultra High Frequency satellite communications by introducing new capabilities to mobile warfighters throughout the world.

The first MUOS satellite launched Feb. 24, 2012, from Cape Canaveral Air Force Station, Fla., and is progressing steadily with on-orbit checkout. The wideband code division multiple access payload provides 16 times the capacity over the existing system, including global connectivity through the Defense Information Systems Network and support services such as full two-way voice and data transfers. The Lockheed Martin-led team is completing satellite validation in preparation for customer handover in June.

The first MUOS satellite and associated ground system will provide initial on-orbit capability this year, followed by the launch of the second spacecraft in 2013. The five-satellite global constellation is expected to achieve full operational capability in 2015, extending UHF narrowband communications availability to the armed forces well past 2025.

The MUOS constellation replaces the legacy Ultra High Frequency Follow-On system and provides significantly improved assured communications for mobile warfighters. A single MUOS satellite will provide four times the capacity of the entire UFO constellation of 8 satellites. Each MUOS satellite also includes a legacy UHF payload that is fully compatible with the current UFO system and legacy terminals. This dual-payload design ensures a smooth transition to the cutting-edge MUOS technology while the UFO system is phased out.

Lockheed Martin Space Systems, Sunnyvale, Calif., is the MUOS prime contractor and system integrator. The Navy’s Program Executive Office for Space Systems, Chantilly, Va., and its Communications Satellite Program Office, San Diego, Calif., are responsible for the MUOS program.




All of this week's top headlines to your email every Friday.


 
 

 

Northrop Grumman sets new greenhouse gas emission reduction goal of 30 percent by 2020

Northrop Grumman announced April 22 its commitment to reduce greenhouse gas emissions by 30 percent from 2010 levels by 2020, as part of its commemoration of Earth Day.   “Northrop Grumman is dedicated to top performance in environmental sustainability,” said Wes Bush, chairman, chief executive officer and president. “This new goal sets the bar significantly...
 
 

Lockheed Martin demonstrates enhanced ground control system, software for small UAV

Lockheed Martin’s Group 1 family of unmanned aircraft systems is migrating to enhanced automation capabilities using its KestrelĂ´ “Fly Light” flight control systems and industry-leading mobile Ground Control Station software. The increased automation allows operators to focus on executing the mission, rather than flying various aircraft. Earlier this year, Lockheed MartinR...
 
 

U.S. Navy awards General Dynamics $33 million to operate, maintain military sealift ships

The U.S. Navy has awarded General Dynamics American Overseas Marine LLC a $32.7 million contract modification to operate and maintain seven large, medium-speed, roll-on / roll-off ships for the Military Sealift Command. AMSEA is a wholly owned subsidiary of General Dynamics. Under the terms of the modification, AMSEA will provide services including crewing, engineering, maintenance,...
 

 

US Navy deploys Standard Missile-3 Block IB for first time

In partnership with the Missile Defense Agency, the U.S. Navy deployed the second-generation Standard Missile-3 Block IB made by Raytheon for the first time, initiating the second phase of the Phased Adaptive Approach. “The SM-3 Block IB’s completion of initial operational testing last year set the stage for a rapid deployment to theater,” said Dr....
 
 

International customer signs agreement for Raytheon’s TOW missiles

An international customer signed an agreement with the U.S. government for a foreign military sale of tube-launched, optically tracked, wireless-guided (TOW) missiles to be supplied by Raytheon in a deal valued at approximately $750 million. Raytheon plans to deliver nearly 14,000 TOW missiles to the customer over a three-year period beginning in 2015. A resulting...
 
 

General Dynamics opens new radio testing lab for MUOS satellite-ground station communications

General Dynamics C4 Systems has opened the MUOS Radio Testing Lab at its Scottsdale, Ariz., location. The U.S. Navy-approved laboratory is one of two that supports testing for radio-terminals intending to connect with the MUOS space-ground network. The lab is equipped with hardware and software that simulates the radio’s connectivity with the MUOS ground network....
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>