Space

June 20, 2012

NASA spacecraft reveals ice content in Moon crater

Elevation (left) and shaded relief (right) image of Shackleton, a 21-km-diameter (12.5-mile-diameter) permanently shadowed crater adjacent to the lunar south pole. The structure of the crater’s interior was revealed by a digital elevation model constructed from over 5 million elevation measurements from the Lunar Orbiter Laser Altimeter.

NASA’s Lunar Reconnaissance Orbiter spacecraft has returned data that indicate ice may make up as much as 22 percent of the surface material in a crater located on the moon’s south pole.

The team of NASA and university scientists using laser light from LRO’s laser altimeter examined the floor of Shackleton crater. They found the crater’s floor is brighter than those of other nearby craters, which is consistent with the presence of small amounts of ice. This information will help researchers understand crater formation and study other uncharted areas of the moon. The findings are published in the June 23 edition of the journal Nature.

“The brightness measurements have been puzzling us since two summers ago,” said Gregory Neumann of NASA’s Goddard Space Flight Center in Greenbelt, Md., a co-author on the paper. “While the distribution of brightness was not exactly what we had expected, practically every measurement related to ice and other volatile compounds on the moon is surprising, given the cosmically cold temperatures inside its polar craters.”

The spacecraft mapped Shackleton crater with unprecedented detail, using a laser to illuminate the crater’s interior and measure its albedo or natural reflectance. The laser light measures to a depth comparable to its wavelength, or about a micron. That represents a millionth of a meter, or less than one ten-thousandth of an inch. The team also used the instrument to map the relief of the crater’s terrain based on the time it took for laser light to bounce back from the moon’s surface. The longer it took, the lower the terrain’s elevation.

In addition to the possible evidence of ice, the group’s map of Shackleton revealed a remarkably preserved crater that has remained relatively unscathed since its formation more than three billion years ago. The crater’s floor is itself pocked with several small craters, which may have formed as part of the collision that created Shackleton.

The crater, named after the Antarctic explorer Ernest Shackleton, is two miles deep and more than 12 miles wide. Like several craters at the moon’s south pole, the small tilt of the lunar spin axis means Shackleton crater’s interior is permanently dark and therefore extremely cold.

“The crater’s interior is extremely rugged,” said Maria Zuber, the team’s lead investigator from the Massachusetts Institute of Technology in Cambridge in Mass. “It would not be easy to crawl around in there.”

While the crater’s floor was relatively bright, Zuber and her colleagues observed that its walls were even brighter. The finding was at first puzzling. Scientists had thought that if ice were anywhere in a crater, it would be on the floor, where no direct sunlight penetrates. The upper walls of Shackleton crater are occasionally illuminated, which could evaporate any ice that accumulates. A theory offered by the team to explain the puzzle is that “moonquakes”- seismic shaking brought on by meteorite impacts or gravitational tides from Earth – may have caused Shackleton’s walls to slough off older, darker soil, revealing newer, brighter soil underneath. Zuber’s team’s ultra-high-resolution map provides strong evidence for ice on both the crater’s floor and walls.

“There may be multiple explanations for the observed brightness throughout the crater,” said Zuber. “For example, newer material may be exposed along its walls, while ice may be mixed in with its floor.”

The initial primary objective of LRO was to conduct investigations that prepare for future lunar exploration. Launched in June 2009, LRO completed its primary exploration mission and is now in its primary science mission. LRO was built and is managed by Goddard. This research was supported by NASA’s Human Exploration and Operations Mission Directorate and Science Mission Directorate at the agency’s headquarters in Washington, D.C.




All of this week's top headlines to your email every Friday.


 
 

 

News Briefs February 27, 2015

Ukraine will start pulling back heavy weapons in the east Ukraine’s military says it will start pulling back its heavy weapons from the front line with Russian-backed separatists as required under a cease-fire agreement. The Defense Ministry said in a statement Feb. 26 that it reserved the right to revise its withdrawal plans in the...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 

 
navy-china

USS Fort Worth conducts CUES with Chinese Navy

The littoral combat ship USS Fort Worth (LCS 3) practiced the Code for Unplanned Encounters at Sea (CUES) with the People’s Liberation Army-Navy Jiangkai II frigate Hengshui (FFG 572) Feb. 23 enhancing the professional ma...
 
 

AEGIS tracks, simulates engagement of three short-range ballistic missiles

The Missile Defense Agency and sailors aboard the guided-missile destroyers USS Carney (DDG 64), USS Gonzalez (DDG 66), and USS Barry (DDG 52) successfully completed a flight test involving the Aegis Ballistic Missile Defense weapon system. At approximately 2:30 a.m., EST, Feb. 26, three short-range ballistic missile targets were launched near simultaneously from NASA’s Wallops...
 
 

DOD seeks novel ideas to shape its technological future

The Defense Department is seeking novel ideas to shape its future, and officials are looking to industry, small business, academia, start-ups, the public – anyone, really – to boost its ability to prevail against adversaries whose access to technology grows daily. The program, called the Long-Range Research and Development Plan, or LRRDP, began with an...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>