Space

June 21, 2012

Boeing successfully completes key reviews of space launch system

Cryogenic stages validated by system requirements review, system definition review: Heavy-lift rocket program moves into design phase

Boeing last week successfully completed its first major technical reviews for the cryogenic stages of the Space Launch System, bringing the team into the design phase for the nation’s next heavy-lift, human-rated rocket.

The combined System Requirements Review and System Definition Review, held at NASA’s Marshall Space Flight Center in Huntsville, Ala., with independent consultants from previous successful programs, validated that Boeing and NASA have developed solid system requirements for the cryogenic stages and supporting hardware. A cryogenic rocket engine uses liquefied gas stored at very low temperatures for optimal rocket efficiency.

While SRR is a contractual requirement, Boeing simultaneously pursued the SDR to enable a higher quality of requirements as the team enters the design phase. The reviews, completed well ahead of the scheduled August time frame for SRR, enabled a more aggressive path to core stage delivery to NASA, and validated the stage’s design concept and production approaches.

NASA’s plan uses existing elements for the boosters, crew capsule, and engines, but the cryogenic stages are new elements that require significantly more design and development. That makes successful, timely reviews essential to the progress of the entire SLS program.

“The Boeing and NASA team is demonstrating the value of our integrated approach to developing requirements,” said Jim Chilton, vice president and program manager for Boeing Exploration Launch Systems.

“SRR locks in requirements and serves as the basis for our estimates and performance metrics,” said Chuck Hanes, Boeing SLS business manager. “The understanding we reach at SRR and SDR is a firm commitment to the rocket’s requirements, design and resources.”

Boeing is designing, developing and producing part of SLS, the United States’ next-generation, human-rated rocket to transport people to deep space, enabling the next step in space exploration. Boeing is responsible for the SLS cryogenic stages and avionics. Design work for the cryogenic stages is performed in Huntsville, with production at NASA’s Michoud Assembly Facility in New Orleans.




All of this week's top headlines to your email every Friday.


 
 

 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 
 

NASA releases first global rainfall, snowfall map from new mission

Like a lead violin tuning an orchestra, the GPM Core Observatory – launched one year ago on Feb. 27, 2014, as a collaboration between NASA and the Japan Aerospace Exploration Agency – acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA’s Integrated Multi-satellite Retrievals for GPM...
 

 

New NASA Earth Science Missions expand view of our home planet

Four new NASA Earth-observing missions are collecting data from space with a fifth newly in orbit ñ after the busiest year of NASA Earth science launches in more than a decade. On Feb. 27, 2014, NASA and the Japan Aerospace Exploration Agency launched the Global Precipitation Measurement Core Observatory into space from Japan. Data from...
 
 

NASA, ESA telescopes give shape to furious black hole winds

NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA’s (European Space Agency) XMM-Newton telescope are showing that fierce winds from a supermassive black hole blow outward in all directions – a phenomenon that had been suspected, but difficult to prove until now. This discovery has given astronomers their first opportunity to measure the strength of these...
 
 
NASA photograph by Gary Banziger

Jurczyk named head of NASA Space Technology Mission Directorate

NASA photograph by Gary Banziger NASA’s Steve Jurczyck addresses an audience during a manufacturing event in Hampton, Va., last month. NASA Administrator Charles Bolden has named Steve Jurczyk as the agency’s Associ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>