Space

June 21, 2012

NASA space launch system core stage moves from concept to design

The nation’s space exploration program is taking a critical step forward with a successful major technical review of the core stage of the Space Launch System, the rocket that will take astronauts farther into space than ever before.

The core stage is the heart of the heavy-lift launch vehicle. It will stand more than 200 feet (61 meters) tall with a diameter of 27.5 feet (8.4 meters).

NASA’s Marshall Space Flight Center in Huntsville, Ala., hosted a comprehensive review. Engineers from NASA and Boeing of Huntsville presented a full set of system requirements, design concepts and production approaches to technical reviewers and the independent review board.

“This meeting validates our design requirements for the core stage of the nation’s heavy-lift rocket and is the first major checkpoint for our team,” said Tony Lavoie, manager of the SLS Stages Element at Marshall. “Getting to this point took a lot of hard work, and I’m proud of the collaboration between NASA and our partners at Boeing. Now that we have completed this review, we go from requirements to real blueprints. We are right on track to deliver the core stage for the SLS program.”

The core stage will store liquid hydrogen and liquid oxygen to feed the rocket’s four RS-25 engines, all of which will be former space shuttle main engines for the first few flights. The SLS Program has an inventory of 16 RS-25 flight engines that successfully operated for the life of the Space Shuttle Program. Like the space shuttle, SLS also will be powered initially by two solid rocket boosters on the sides of the launch vehicle.

The SLS will launch NASA’s Orion spacecraft and other payloads, and provide an entirely new capability for human exploration beyond low Earth orbit. Designed to be safe, affordable and flexible for crew and cargo missions, the SLS will continue America’s journey of discovery and exploration to destinations including nearby asteroids, Lagrange points, the moon and ultimately, Mars.

“This is a very exciting time for the country and NASA as important achievements are made on the most advanced hardware ever designed for human spaceflight,” said William Gerstenmaier, associate administrator for the Human Exploration Operations Mission Directorate at NASA Headquarters in Washington. “The SLS will power a new generation of exploration missions beyond low Earth orbit and the moon, pushing the frontiers of discovery forward. The innovations being made now, and the hardware being delivered and tested, are all testaments to the ability of the U.S. aerospace workforce to make the dream of deeper solar system exploration by humans a reality in our lifetimes.”

The first test flight of NASA’s Space Launch System, which will feature a configuration for a 77-ton (70-metric-ton) lift capacity, is scheduled for 2017. As SLS evolves, a two-stage launch vehicle configuration will provide a lift capability of 143 tons (130 metric tons) to enable missions beyond low Earth orbit and support deep space exploration.

Boeing is the prime contractor for the SLS core stage, including its avionics. The core stage will be built at NASA’s Michoud Assembly Facility in New Orleans using state-of-the-art manufacturing equipment. Marshall manages the SLS Program for the agency.

Across the SLS Program, swift progress is being made on several elements. The J-2X upper-stage rocket engine, developed by Pratt & Whitney Rocketdyne for the future two-stage SLS, is being tested at Stennis Space Center in Mississippi. The prime contractor for the five-segment solid rocket boosters, ATK of Brigham City, Utah, has begun processing its first SLS hardware components in preparation for an initial qualification test in 2013.




All of this week's top headlines to your email every Friday.


 
 

 

NASA airborne campaigns tackle climate questions from Africa to Arctic

NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into how different aspects of the interconnected Earth system influence climate change. NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into...
 
 
NASA photograph by Aubrey Gemignani

New crew arrives at space station to continue scientific research

NASA photograph by Aubrey Gemignani The Soyuz TMA-15M rocket launches from the Baikonur Cosmodrome in Kazakhstan Nov. 24, 2014 carrying Expedition 42 Soyuz Commander Anton Shkaplerov of the Russian Federal Space Agency (Roscosm...
 
 
nasa-cube

NASA opens Cube Quest Challenge for largest-ever prize of $5 million

Registration now is open for NASA’s Cube Quest Challenge, the agency’s first in-space competition that offers the agency’s largest-ever prize purse. Competitors have a shot at a share of $5 million in prize money and ...
 

 
Lockheed Martin image

Ball Aerospace equips Orion mission with key avionics, antenna hardware

Lockheed Martin image Ball Aerospace & Technologies Corp. is providing the phased array antennas and flight test cameras to prime contractor Lockheed Martin for Orion’s Exploration Flight Test-1 (EFT-1), which is an u...
 
 
NASA photograph

NASA announces new opportunities for public participation in asteroid grand challenge

NASA photograph Team NOVA Took the Winning Hackathon Prize.   Ten new projects are providing opportunities for the public to participate in NASA’s Asteroid Grand Challenge, which accelerates the agency’s astero...
 
 
XCOR Aerospace photograph by Mike Massee

XCOR Aerospace announces latest milestone in ULA program

XCOR Aerospace photograph by Mike Massee The XCOR-ULA XR-5H25 LOX-Hydrogen Rocket Engine, fed by XCOR’s proprietary rocket propellant piston pump technology. MOJAVE, Calif. XCOR Aerospace announced Nov. 20 it has complete...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>