Tech

June 25, 2012

Cloud formation discovery expected to impact future military operations

by John J. Joyce
Dahlgren, Va.

Aerographer’s Mate Airman Mathew T. Chesko, right, and Aerographer’s Mate 3rd Class Josh C. Nelson launch a weather balloon from the fantail of the aircraft carrier USS George H.W. Bush. George H.W. Bush is deployed to the U.S. 5th Fleet area of responsibility on its first operational deployment conducting maritime security operations and support missions as part of Operations Enduring Freedom and New Dawn. Navy scientists announced on June 21, 2012 that a newly discovered radar capability to detect individual cloud hydrometeors in the free atmosphere can impact future performance of combat systems and military decision making. “The Navy’s ultimate hope in understanding these cloud formations is to improve the description and forecasting of severe weather which in-turn would help the Navy and DOD in evaluating systems performance and in day-to-day decision making,” said Dr. Mark Anderson, a Naval Surface Warfare Center Dahlgren Division principal systems scientist who co-authored a paper entitled “Radar Observations of Individual Rain Drops in the Free Atmosphere” published in the Proceedings of the National Academy of Sciences journal.

A newly discovered radar capability to detect individual cloud hydrometeors in the free atmosphere can impact future performance of combat systems and military decision making, Navy scientists announced June 21.

The technical details of the capability – made possible with a very high-resolution Doppler radar – are expounded in a paper entitled “Radar Observations of Individual Rain Drops in the Free Atmosphere” published in the Proceedings of the National Academy of Sciences journal May 28.

“This series of experiments demonstrate classic science,” said Dr. Mark Anderson, a Naval Surface Warfare Center Dahlgren Division principal systems scientist who co-authored the paper. “The Navy’s ultimate hope in understanding these cloud formations is to improve the description and forecasting of severe weather which in-turn would help the Navy and the Defense Department in evaluating systems performance and in day-to-day decision making.”

The Naval Research Laboratory multi-agency study revealed the unexpected and is improving scientists’ understanding of the dynamics and structure of cloud systems.

“The signal processing of the radar returns revealed that these cloud details led to the unanticipated observations of individual rain drops – a first ever observation through remote sensing means,” explained Anderson.

A team of specialists – spanning an area of expertise from cloud physics and dynamics to radar theory, design, and applications – coordinated the series of weather experiments with the Naval Ordinance Test Unit, the Federal Aviation Administration, the Cape Canaveral Air Force Station Facility, and NASA between 2008 and 2010.

Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change.

This modeling is successful because the bulk cloud properties are based on statistical analysis of the returned microwave signals scattered by diverse particles comprised of numerous, perhaps billions, of cloud hydrometeors illuminated within a given radar pulse volume.

“The study has shown that it is now possible to combine bulk measurements with nearly simultaneous measurements of the individual cloud particles themselves,” said the NRL study’s lead author, Dr. Jerome Schmidt.

Schmidt and his team of scientists hope that such coupling with a single instrument will lead to new understanding of the dynamics and structure of the cloud systems that exert a strong control on our everyday weather and long-term climate.

They expect their research to motivate the design of new weather research radars which will help unlock remaining secrets of cloud and precipitation formation such as the development and movement of large hail stones which lead to over a billion dollars in damage annually to crops and property in the United States alone.

“The original intent of the study was to establish methods that accurately measure NRL’s ability to predict various forms of stormy weather and cloud liquid and ice water content,” said Anderson. “As the experiments progressed, the team began to realize that they were observing cloud structures with a radar at the unprecedented range resolution of 0.5 meters – a world’s best.”

In addition to studying the properties of various cloud systems, the experiments evaluated the ability of the U.S. Navy’s Mid-Course Radar to retrieve information on the internal cloud flow and precipitation structure.

The team used an instrumented research aircraft to conduct field projects during the height of the Florida summer convective season to collect radar data, launch weather balloons and collect “in situ” (in position) cloud data.

The scientists documented other features of the local cloud systems using a variety of complimentary surface-based sensors and cameras that continually monitor the sky conditions and guide the placement of the aircraft and the high-resolution radar beam.

The result of one study captured the structure of a deep convective cloud system as it passed over the vertically pointed radar and revealed both the bulk radar reflectivity structure and the nature of individual rain drops which appear as linear streaks while traversing the narrow radar beam on their way to the surface.

The multi-agency effort included scientists from NRL’s Marine Meteorology Division, NSWCDD Strategic and Weapon Control Systems Department, the Scripps Institution of Oceanography, Johns Hopkins University Applied Physics Laboratory, L-3 Interstate Electronics Corp., Radar Technology Specialists Corp., Weather Modification, Inc., and students from universities as far away as the Institute of Geophysics located at the University of Warsaw, Poland.




All of this week's top headlines to your email every Friday.


 
 

 
University of Rhode Island photograph by Tom Glennon

NASA kicks off field campaign to probe ocean ecology, carbon cycle

University of Rhode Island photograph by Tom Glennon The Research Vessel Endeavor is the floating laboratory that scientists will use for the ocean-going portion of the SABOR field campaign this summer. NASA embarks this week o...
 
 
NASA photograph by Carla Thomas

NASA’s high-flying laser altimeter to check out summer sea ice, more

NASA photograph by Carla Thomas This summer, the Multiple Altimeter Beam Experimental Lidar, or MABEL, will fly above Alaska and the Arctic Ocean on one of NASA’s ER-2 high-altitude aircraft. Sea ice in summer looks dramatica...
 
 
SOFIA

Outer space to inner space: SOFIA inside Lufthansa Technik hangar

NASA photograph by Jeff Doughty NASA’s Stratospheric Observatory for Infrared Astronomy is shown inside the Lufthansa Technik hangar in Hamburg, Germany where it is beginning its decadal inspection. Flight, aircraft maint...
 

 
NASA photograph by Tony Landis

New life for an old bird: NASA’s F-15B test bed gets new engines

NASA photograph NASA’s F-15B flight research test bed carries shuttle thermal insulation panels on its underbelly during a research flight in 2005. NASA Armstrong’s F-15B aeronautics research test bed, a workhorse at th...
 
 
NASA photograph by Tom Tschida

Towed glider benefits from center’s new 3-D printer capability

NASA photograph by Tom Tschida The major components of NASA Armstrong’s new high-resolution 3-D additive manufacturing printer occupy a shelf in the center’s subscale aircraft research lab. Robert “Red” ...
 
 
NASA photograph by Emmett Given

NASA completes testing on 3-D printer

NASA photograph by Emmett Given United Space Alliance engineer Cynthia Azzarita, left, and Boeing Company engineer Chen Deng, members of the Human Factors Integration Team at NASA’s Johnson Space Center, conduct a “...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>