Tech

June 27, 2012

Auto-GCAS flight tests on DROID UAV declared a success

NASA Dryden’s DROID small unmanned research aircraft executes a hard right climbing turn to avoid crashing into a rocky desert ridge during flight tests of a miniature ground collision avoidance system for small unmanned air vehicles. The DROID – short for Dryden Remotely Operated Integrated Drone – provided good data for project engineers as they flight-validated the collision avoidance software Installed in a smartphone connected to its autopilot that enabled automatic fly-ups or turns when the aircraft neared terrain.

Project officials at NASA’s Dryden Flight Research Center, Edwards, Calif., are hailing the success of recent flights tests of a miniature automatic ground collision avoidance system for small unmanned aircraft, after the smartphone-assisted system repeatedly executed pull-ups or sharp turns of the test aircraft to avoid imminent impact with terrain in its flight path.

During final test flights of the software integrated into an autopilot on the Dryden Remotely Operated Integrated Drone research aircraft in May, the system consistently commanded evasive maneuvers when it sensed the aircraft was getting too close to rocky, mountainous terrain or ridgelines.

The software has been adapted by the project team into an application for a smartphone using the Android operating system linked to a small Piccolo autopilot. The last flight tests were flown with the smartphone containing the developmental software installed in the aircraft.

This graphic depicts how the automatic ground collision avoidance system (Auto-GCAS) software application, tied to a small autopilot, can command the flight controls to alter the flight path of an aircraft when it is facing the imminent threat of a collision with the ground.

“For these last flights, the smartphone aboard the aircraft eliminated the need for the ground control station link to be in constant communications with the aircraft,” said Dryden’s project manager Mark Skoog. “On these flights the system performed very reliably, consistently initiating recoveries close to the last possible moment, even in the face of numerous losses of communications with the ground control station right at the critical point of needing to avoid the colliding with the mountain,” Skoog said.

Several NASA Dryden Remotely Operated Integrated Drone project team members secure the aircraft’s single-piece wing during flight tests of the project’s miniature ground collision avoidance system for small unmanned air vehicles.

The last two flights, conducted at a remote dry lake surrounded by hilly desert terrain northeast of Edwards Air Force Base, Calif., saw the system successfully execute five mountainous terrain collision avoidance fly-ups, five ridge crossings executed with and without the software’s multi-trajectory mode on, and a clockwise and counter-clockwise “patrol” over the valley with the multi-trajectory mode off.

The last flights were not without a few glitches that are often the hallmark of experimental flight testing and software development, ranging from computer cooling issues in the ground control station van, to a non-responsive left actuator on the DROID research aircraft. The latter challenge forced the project team to disassemble the aircraft’s wing, where they discovered wires had separated. Innovative repairs were made in the field requiring a creative use of the minimal resources available, and the aircraft was again ready to fly.

Test objectives of the final flights included phone-on-aircraft testing of the team’s latest software changes for failure mode logic of the collision avoidance system. The project team also collected terrain influences on wind for trajectory prediction, and verified the software’s nuisance evaluation of single-trajectory versus multi-trajectory flight options.

In all, the phone-on-aircraft software changes functioned well, with the software’s multi-trajectory capability providing noticeable nuisance-free flight improvements over its single-trajectory mode.

The flights were conducted within Dryden’s Western Aeronautical Test Range, which is part of the restricted military flight-test ranges over Edwards Air Force Base and Southern California’s high desert.

NASA Dryden’s DROID small unmanned research aircraft executes a hard right climbing turn to avoid a ridgeline during flight tests of a miniature ground collision avoidance system for small unmanned air vehicles.

“Our last flights represent well over a year of hard work by a highly skilled and dedicated team who have made important steps towards the elimination of controlled flight into terrain accidents,” said Jack Ryan, the project’s chief engineer.

The Auto-GCAS/DROID project team will now complete analysis of the flight data and begin the report writing process.

When fully developed and matured, the miniaturized Auto-GCAS technology could have wide applications for potential use in general aviation aircraft, including both manned and remotely and autonomously operated unmanned aircraft systems.

Development and adaptation of the automatic ground-collision avoidance software into a smart phone application for unmanned aircraft was sponsored by NASA Dryden and the Defense Safety Oversight Council of the U.S. Department of Defense.

Banking hard to starboard after a very close pass near a ridgeline, NASA Dryden’s DROID research aircraft provided good data for project engineers during flight tests of a miniature ground collision avoidance system for small unmanned air vehicles.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph

Sally Ride dies at 61

NASA photograph Astronuat Sally Ride floats alongside Challenger’s middeck airlock hatch. Sally Ride, the NASA flight engineer who became the first American woman in space when the shuttle Challenger roared into orbit in ...
 
 
nasa-soyuz-landing2

Trio from ISS land safely in Kazakhstan

Three members of the Expedition 31 crew undocked from the International Space Station and returned safely to Earth Sunday, July 1, wrapping up a mission that lasted six-and-a-half months. Russian Commander Oleg Kononenko...
 
 

Northrop Grumman’s F-35 DAS, radar demonstrate ability to detect, track, target ballistic missiles

Northrop Grumman recently demonstrated the ballistic missile detection, tracking and targeting capabilities of the company’s AN/AAQ-37 distributed aperture system and AN/APG-81 active electronically scanned array radar, both of which are featured on the F-35 Joint Strike Fighter aircraft. Leveraging NASA’s Science Mission Directorate-sponsored Anomalous Transport Rocket Experiment l...
 

 

Original 1972 space shuttle mock-up to emerge

Just when it seemed all the space shuttles had been doled out to museums for display, it turns out there’s one more – sort of. A full-size mock-up built in 1972 by the shuttle contractor Rockwell has for years been under wraps in a dark and empty warehouse in Downey, Calif., a southeast Los Angeles...
 
 
Boeing photograph

Boeing Phantom Eye completes first autonomous flight

Boeing photograph Boeing’s Phantom Eye unmanned airborne system takes off on its 28-minute first autonomous flight June 1 at NASA’s Dryden Flight Research Center, Edwards, Calif. Boeing’s Phantom Eye unmanned ...
 
 

Pentagon restricts F-22 flights, safety a concern

Facing a mysterious safety problem with the Air Force’s most-prized stealth fighter, Defense Secretary Leon Panetta May 15 ordered new flight restrictions on the F-22 and summoned help from Navy and NASA experts. Panetta endorsed Air Force efforts to figure out why some F-22 pilots have experienced dizziness and other symptoms of an oxygen shortage...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>