Space

July 16, 2012

NASA selects Space Launch System advanced booster proposals

NASA has selected six proposals to improve the affordability, reliability and performance of an advanced booster for the Space Launch System.

The awardees will develop engineering demonstrations and risk reduction concepts for SLS, a heavy-lift rocket that will provide an entirely new capability for human exploration beyond low Earth orbit.

“The initial SLS heavy-lift rocket begins with the proven hardware, technology and capabilities we have today and will evolve over time to a more capable launch vehicle through competitive opportunities,” said William Gerstenmaier, associate administrator for the Human Exploration Operations Mission Directorate at NASA Headquarters in Washington. “While the SLS team is making swift progress on the initial configuration and building a solid baseline, we also are looking ahead to enhance and upgrade future configurations of the heavy lift vehicle. We want to build a system that will be upgradable and used for decades.”

Designed to be flexible for launching spacecraft, including NASA’s Orion multipurpose vehicle, for crew and cargo missions SLS will enable NASA to meet the president’s goal of sending humans to an asteroid by 2025 and to Mars in the 2030s. The initial SLS configuration will use two five-segment solid rocket boosters similar to the solid rocket boosters that helped power the space shuttle to orbit. The evolved SLS vehicle will require an advanced booster with significant increase in thrust from any existing U.S. liquid or solid boosters.

Individual awards will vary with a total NASA investment of as much as $200 million.

 

Proposals selected for contract negotiations are:

  • “Subscale Composite Tank Set,” Northrop Grumman Systems Corporation Aerospace Systems
  • “Full-Scale Combustion Stability Demonstration,” Aerojet General Corp.
  • “F-1 Engine Risk Reduction Task,” Dynetics Inc.
  • “Main Propulsion System Risk Reduction Task,” Dynetics Inc.
  • “Structures Risk Reduction Task,” Dynetics Inc.
  • “Integrated Booster Static Test,” ATK Launch Systems Inc.

 

“We are building a new national capability to carry astronauts and science experiments beyond Earth orbit to new destinations in space,” said Todd May, SLS program manager at NASA’s Marshall Space Flight Center in Huntsville, Ala. “Our industry partners have presented a variety of options for reducing risk while increasing performance and affordability, and we’re looking forward to seeing their innovative ideas come to life.”

The proposal selections are the first step in the NASA Research Announcement procurement process. The second step, the formal contract award, will follow after further negotiations between NASA and selected organizations. All funded efforts will demonstrate and examine advanced booster concepts and hardware demonstrations during a 30-month period. This risk mitigation acquisition precedes the follow-on design, development, testing and evaluation competition for the SLS advanced booster currently planned for 2015.

All proposals will be valid for 12 months to allow for a later award should the opportunity become available, unless withdrawn by the offeror prior to award. Successful offerors to this NRA are not guaranteed an award for any future advanced booster acquisition.

The first test flight of NASA’s Space Launch System, which will feature a configuration for a 77-ton lift capacity, is scheduled for 2017. As SLS evolves, a two-stage launch vehicle configuration will provide a lift capability of 143 tons.

Marshall manages the SLS Program for the agency.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 18, 2014

News: U.S. mission in Iraq could expand, Pentagon official says - The mission for U.S. troops in Iraq to help Kurdish and Iraqi security forces in their fight against Islamic militants remains limited for now, but may expand after Iraqi leaders form a new government, a Pentagon spokesman said Aug. 19.   Business: Fuel deals top...
 
 

News Briefs August 20, 2014

Trials complete on fourth Coast Guard cutter Ingalls Shipbuilding in Pascagoula, Miss., has completed acceptance sea trials for the company’s fourth U.S. Coast Guard national security cutter, Hamilton. Jim French, Ingalls’ NSC program manager, tells The Mississippi Press) the Hamilton is scheduled to be delivered next month and commissioned on Dec. 6 in Charleston, South...
 
 
Army photograph by Sgt. Thomas Duval

Air Force, Army Aviation come together to complete vital mission in Egypt

Army photograph by Sgt. Thomas Duval Soldiers and airmen load a UH-60 Black Hawk into an Air Force C17 Globemaster III Aug. 19, 2104, at an old Israeli airstrip in the Sinai Peninsula of Egypt. The airstrip is now used by the M...
 

 
Air Force photograph by TSgt. Terri Praden

Joint effort validates ability to move Stryker vehicles via air

Air Force photograph by TSgt. Terri Praden An Army Stryker combat vehicle is guided into a C-17 Globemaster III during a 25th Infantry Division training exercise Aug. 13, 2014, at Joint Base Pearl Harbor-Hickam, Hawaii. The Str...
 
 
NASA image

Ozone-depleting compound persists, NASA research shows

NASA image Satellites observed the largest ozone hole over Antarctica in 2006. Purple and blue represent areas of low ozone concentrations in the atmosphere; yellow and red are areas of higher concentrations. NASA research show...
 
 

F-16V completes major capability milestone

The newest configuration of the F-16 Fighting Falcon, the F-16V, has reached a major capability milestone with the integration of a new Active Electronically Scanned Array radar. Completing this milestone on schedule demonstrates our ability to meet program commitments, said Roderick McLean, vice president and general manager of the F-16/F-22 Integrated Fighter Group at Lockheed...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>