Space

July 16, 2012

NASA selects Space Launch System advanced booster proposals

NASA has selected six proposals to improve the affordability, reliability and performance of an advanced booster for the Space Launch System.

The awardees will develop engineering demonstrations and risk reduction concepts for SLS, a heavy-lift rocket that will provide an entirely new capability for human exploration beyond low Earth orbit.

“The initial SLS heavy-lift rocket begins with the proven hardware, technology and capabilities we have today and will evolve over time to a more capable launch vehicle through competitive opportunities,” said William Gerstenmaier, associate administrator for the Human Exploration Operations Mission Directorate at NASA Headquarters in Washington. “While the SLS team is making swift progress on the initial configuration and building a solid baseline, we also are looking ahead to enhance and upgrade future configurations of the heavy lift vehicle. We want to build a system that will be upgradable and used for decades.”

Designed to be flexible for launching spacecraft, including NASA’s Orion multipurpose vehicle, for crew and cargo missions SLS will enable NASA to meet the president’s goal of sending humans to an asteroid by 2025 and to Mars in the 2030s. The initial SLS configuration will use two five-segment solid rocket boosters similar to the solid rocket boosters that helped power the space shuttle to orbit. The evolved SLS vehicle will require an advanced booster with significant increase in thrust from any existing U.S. liquid or solid boosters.

Individual awards will vary with a total NASA investment of as much as $200 million.

 

Proposals selected for contract negotiations are:

  • “Subscale Composite Tank Set,” Northrop Grumman Systems Corporation Aerospace Systems
  • “Full-Scale Combustion Stability Demonstration,” Aerojet General Corp.
  • “F-1 Engine Risk Reduction Task,” Dynetics Inc.
  • “Main Propulsion System Risk Reduction Task,” Dynetics Inc.
  • “Structures Risk Reduction Task,” Dynetics Inc.
  • “Integrated Booster Static Test,” ATK Launch Systems Inc.

 

“We are building a new national capability to carry astronauts and science experiments beyond Earth orbit to new destinations in space,” said Todd May, SLS program manager at NASA’s Marshall Space Flight Center in Huntsville, Ala. “Our industry partners have presented a variety of options for reducing risk while increasing performance and affordability, and we’re looking forward to seeing their innovative ideas come to life.”

The proposal selections are the first step in the NASA Research Announcement procurement process. The second step, the formal contract award, will follow after further negotiations between NASA and selected organizations. All funded efforts will demonstrate and examine advanced booster concepts and hardware demonstrations during a 30-month period. This risk mitigation acquisition precedes the follow-on design, development, testing and evaluation competition for the SLS advanced booster currently planned for 2015.

All proposals will be valid for 12 months to allow for a later award should the opportunity become available, unless withdrawn by the offeror prior to award. Successful offerors to this NRA are not guaranteed an award for any future advanced booster acquisition.

The first test flight of NASA’s Space Launch System, which will feature a configuration for a 77-ton lift capacity, is scheduled for 2017. As SLS evolves, a two-stage launch vehicle configuration will provide a lift capability of 143 tons.

Marshall manages the SLS Program for the agency.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

NASA’s Orion Spacecraft powers through first integrated system testing

Lockheed Martin photograph Engineers in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, perform avionics testing on the Orion spacecraft being prepared for its first trip to space later this ye...
 
 

NASA’s Hubble extends stellar tape measure 10 times farther into space

Using NASA’s Hubble Space Telescope, astronomers now can precisely measure the distance of stars up to 10,000 light-years away – 10 times farther than previously possible. Astronomers have developed yet another novel way to use the 24-year-old space telescope by employing a technique called spatial scanning, which dramatically improves Hubble’s accuracy for making angular meas...
 
 
LM-AEHF

Fourth AEHF protected communications satellite begins integration months ahead of schedule

The fourth Advanced Extremely High Frequency satellite produced by Lockheed Martin is taking shape after early deliveries of its payload and propulsion core. AEHF-4, expected to launch in 2017, will enable the constellation to ...
 

 
nasa-telescope

NASA looks to go beyond batteries for space exploration

NASA is seeking proposals for the development of new, more capable, energy storage technologies to replace the battery technology that has long powered America’s space program. The core technologies solicited in the Wedne...
 
 

Near Infrared Camera Integrated into space telescope

Lockheed Martin and the University of Arizona have delivered the primary imaging instrument of the James Webb Space Telescope to NASA’s Goddard Space Flight Center. The new Near Infrared Camera, or NIRCam, has been successfully integrated within the heart of the telescope, known as the Integrated Science Instrument Module. The integration completes the suite of...
 
 

NASA awards robotics, vehicle, graphics simulation services contract

NASA has selected MacLean Engineering & Applied Technologies of Houston to provide simulation model development for organizations at the agency’s Johnson Space Center, also in Houston. This indefinite-delivery, indefinite-quantity contract has firm-fixed price and cost-plus fixed-fee task orders. Beginning July 1, the contract has a three-year base period followed by two one-year opt...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>