Tech

July 17, 2012

NASA hypersonic inflatable tech test set for Virginia launch July 21

NASA Space Technology Program researchers will launch and deploy a large inflatable heat shield aboard a rocket traveling at hypersonic speeds this weekend during a technology demonstration test from the agency’s Wallops Flight Facility on Wallops Island, Va.

NASA has four consecutive days of launch opportunities for the agency’s Inflatable Re-entry Vehicle Experiment (IRVE-3), starting July 21, with the liftoff window from 6 a.m. to 8 a.m., EDT, each day.

The test is designed to demonstrate lightweight, yet strong, inflatable structures that could become practical tools for exploration of other worlds or as a way to return items safely to Earth from the International Space Station. During this technology demonstration test flight, NASA’s IRVE-3 payload will try to re-enter Earth’s atmosphere at hypersonic speeds – Mach 5, or 3,800 mph to 7,600 mph.

“As we investigate new ways to bring cargo back to Earth from the International Space Station and innovative ways to land larger payloads safely on Mars, it’s clear we need to invest in new technologies that will enable these goals,” said Michael Gazarik, director of NASA’s Space Technology Program. “IRVE-3 is precisely the sort of cross-cutting technology NASA’s Space Technology Program should mature to make these future NASA and commercial space endeavors possible.”

The IRVE-3 experiment will fly aboard a three-stage Black Brant XI launch vehicle for its suborbital flight. The payload and the heat shield, which looks like a large, uninflated cone of inner tubes, will be packed inside the rocket’s 22-inch-diameter nose cone. About six minutes after launch, the rocket will climb to an altitude of about 280 miles over the Atlantic Ocean.

At that point, the 680-pound IRVE-3 will separate from the rocket. An inflation system similar to air tanks used by scuba divers will pump nitrogen gas into the IRVE-3 aeroshell until it becomes almost 10 feet in diameter. Instruments on board, including pressure sensors and heat flux gauges, as well as cameras, will provide data to engineers on the ground of how well the inflated heat shield performs during the force and heat of entry into Earth’s atmosphere.

After its flight, IRVE-3 will fall into the Atlantic Ocean about 350 miles down range from Wallops. From launch to splash down, the flight is expected to take approximately 20 minutes.

“We originally came up with this concept because we’d like to be able to land more mass and access higher altitudes on Mars,” said Neil Cheatwood, IRVE-3 principal investigator at NASA’s Langley Research Center in Hampton, Va. “To do so you need more drag. We’re seeking to maximize the drag area of the entry system. We want to make it as big as we can. The limitation with current technology has been the launch vehicle diameter.”

Cheatwood and a team of NASA engineers and technicians have spent the last three years addressing the technical challenges of materials withstanding the heat created by atmospheric entry and preparing for the IRVE-3 flight. The team has studied designs, assessed materials in laboratories and wind tunnels, and subjected hardware to thermal and pressure loads beyond what the inflatable spacecraft technology should face during flight.

This test is a follow on to the successful IRVE-2, which showed an inflatable heat shield could survive intact after coming through Earth’s atmosphere. IRVE-3 is the same size as IRVE-2, but has a heavier payload and will be subjected to a much higher reentry heat.

IRVE-3 is part of the Hypersonic Inflatable Aerodynamic Decelerator Project within the Game Changing Development Program, part of NASA’s Space Technology Program. Langley developed and manages the IRVE-3 and HIAD projects.




All of this week's top headlines to your email every Friday.


 
 

 

News Briefs February 27, 2015

Ukraine will start pulling back heavy weapons in the east Ukraine’s military says it will start pulling back its heavy weapons from the front line with Russian-backed separatists as required under a cease-fire agreement. The Defense Ministry said in a statement Feb. 26 that it reserved the right to revise its withdrawal plans in the...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 

 
navy-china

USS Fort Worth conducts CUES with Chinese Navy

The littoral combat ship USS Fort Worth (LCS 3) practiced the Code for Unplanned Encounters at Sea (CUES) with the People’s Liberation Army-Navy Jiangkai II frigate Hengshui (FFG 572) Feb. 23 enhancing the professional ma...
 
 

AEGIS tracks, simulates engagement of three short-range ballistic missiles

The Missile Defense Agency and sailors aboard the guided-missile destroyers USS Carney (DDG 64), USS Gonzalez (DDG 66), and USS Barry (DDG 52) successfully completed a flight test involving the Aegis Ballistic Missile Defense weapon system. At approximately 2:30 a.m., EST, Feb. 26, three short-range ballistic missile targets were launched near simultaneously from NASA’s Wallops...
 
 

DOD seeks novel ideas to shape its technological future

The Defense Department is seeking novel ideas to shape its future, and officials are looking to industry, small business, academia, start-ups, the public – anyone, really – to boost its ability to prevail against adversaries whose access to technology grows daily. The program, called the Long-Range Research and Development Plan, or LRRDP, began with an...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>