Tech

July 23, 2012

AFRL experiment will create artificial ionosphere

by Michael P. Kleiman
Kirtland AFB, N.M.

A samarium cloud similar to the one that will be formed during the Metal Oxide Space Cloud experiment in the ionosphere above the Republic of the Marshall Islands. Two separate sounding rockets will propel canisters containing samarium powder following launch one day apart from U.S. Army’s Ronald Reagan Ballistic Missile Defense Test Site, Kwajalein Atoll. Liftoff is tentatively scheduled for September 2012.

On successive days in September, a pair of two-stage sounding rockets will lift off from the U.S. Army’s Ronald Reagan Ballistic Missile Defense Test Site, Kwajalein Atoll, Republic of the Marshall Islands, with each launch vehicle carrying a canister of samarium powder to its appointed trajectory over the Pacific Ocean.

Within minutes after departing the island, the dust payload will exit one rocket at 118 miles high and the other will be deposited 81 miles up.

After being jettisoned into the ionosphere, located in the upper atmosphere from 50 to 400 miles above the Earth’s surface, the particles will form a plasma cloud, from which scientists of the Air Force Research Laboratory’s Space Vehicles Directorate will obtain data from employing transmitters at two atolls and receivers at five separate isles.

“The two transmitters will send radio waves into the cloud, which will act like a miniature ionosphere. We should get a bounce of the signal off the cloud, depending on how dense it is. The cloud will create an artificial ionosphere and the signal will bounce off of both the real and artificial ionospheres,” said Dr. Todd Pedersen, senior research physicist, AFRL’s Space Vehicles Directorate. “During the Metal Oxide Space Cloud experiment, we will measure where the cloud is and how dense it is. We will also be studying the effects of naturally occurring disturbances in the ionosphere with multiple-directions looks (east-west and north-south passes). The ionosphere is not always a nice smooth line – there are often disturbances.”

Ionospheric turbulence can cause scintillation, which disrupts ground and satellite communication. Information generated from the $3 million MOSC trial will be applied to models for scientists to study the possibility of remediating the detrimental impacts of disturbances in the ionosphere on radio wave propagation.

“Our primary goal of the MOSC mission is to diagnose the cloud, but the long-term ambition is to examine whether we can artificially induce such a cloud to potentially prevent these naturally occurring disturbances from developing. What happens is that in the equatorial region you have a seasonal effect on communication – disturbances that develop in the ionosphere in the nighttime hours that can cause scintillation,” said Ron Caton, research physicist, and principle investigator on the MOSC experiment, AFRL’s Space Vehicles Directorate. “For example, you have someone on the ground trying to communicate with a satellite and the signal is being disturbed as it passes through the ionosphere, similar to watching light scatter through water.”

Although research for the MOSC experiment has spanned the past decade, on-site preparation for the mission began in earnest in June 2011, after a Mission Initiation Conference at NASA Wallops Flight Facility, Wallops Island, Va. With launch of both rockets tentatively scheduled for September 2012, the mission team is planning for placement of ground sensors, imagers and receivers, which has involved visits to four different atolls in the Marshall Islands. Caton recently traveled from Kwajalein to Rongelap, Likiep and Wotho Atolls on a 69-foot boat, with each leg of the trip taking approximately 18-20 hours.

“After being on the boat for so many hours, the team would get out to conduct the site survey in a short time, and then it was back on the water for the multi-hour trip to the next atoll,” Caton said. “On the first night out, it got pretty rough, with 7- to 10-foot swells. I slept on the deck floor. It was definitely an interesting experience.”

Mission partners include the Air Force Space and Missile Systems Center’s Space Test Program and the NASA Wallops Flight Facility. The former is funding the two sounding rockets and the latter is providing them.

“If the MOSC experiment is successful, the next step would be to investigate our ability to introduce such a cloud in the proper location to short out the electric fields that lead to these disturbances that occur naturally,” said Caton. “If we can artificially create this layer under the appropriate conditions, we have taken a huge step toward actively mitigating potential scintillation activity and ultimately enhancing war fighter communication.”




All of this week's top headlines to your email every Friday.


 
 

 
NASA/Boeing image

NASA wraps up first green aviation tests on Boeing ecoDemonstrator

NASA/Boeing image NASA’s recent green aviation tests included the Active Flow Control Enhanced Vertical Tail Flight Experiment, for which 31 tiny devices called sweeping jet actuators were installed on the tail of a Boein...
 
 
onr-locust

LOCUST: Autonomous, swarming UAVs fly into the future

A new era in autonomy and unmanned systems for naval operations is on the horizon, as officials at the¬†Office of Naval Research announced April 14 recent technology demonstrations of swarming unmanned aerial vehicles (UAVs) ‚Ä...
 
 
NASA photograph by Ken Ulbrich

Second X-56A MUTT makes first flight

NASA photograph by Ken Ulbrich NASA researchers are using the X-56A, a low-cost, modular, remotely piloted aerial vehicle, to explore the behavior of lightweight, flexible aircraft structures. Researchers at NASA’s Armstrong ...
 

 
Air Force photograph by Rebecca Amber

Schaefer takes command of 412th Test Wing

Air Force photograph by Rebecca Amber Maj. Gen. Arnold Bunch Jr., Air Force Test Center commander (left), presents the 412th Test Wing guidon to Brig. Gen. Carl Schaefer signifying the beginning of his new command at the 412th ...
 
 

NASA creates partnership to advance composite materials for aircraft of future

NASA has established a public-private partnership with five organizations to advance knowledge about composite materials that could improve the performance of future aircraft. Composites are innovative new materials for building aircraft that can enhance strength while remaining lightweight. The agency selected the National Institute of Aerospace in Hampton, Va., to manage administration of the...
 
 

NASA awards IT contracts to 118 small, disadvantaged businesses

NASA has awarded 118 contracts to small, disadvantaged businesses under Solutions for Enterprise-Wide Procurement (SEWP V), a multi-award Government-Wide Acquisition Contract vehicle focused on information technology products and product-based services. Of these SEWP V contracts, 14 were awarded to businesses operating in historically underutilized business zones, 25 contracts were awarded to b...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>