Events

July 25, 2012

Air Force hosts noted directed energy scientist at anniversary celebration

by Robert P. White, Ph.D.
Air Force Office of Scientific Research, Arlington, Va.

July 18, the Air Force Office of Scientific Research in Arlington, Va., hosted a presentation by noted directed energy researcher Dr. Edl Schamiloglu, Professor of Electrical and Computer Engineering at the University of New Mexico in Albuquerque.

Schamiloglu’s presentation was part of a continuing series of events planned throughout the year as part of AFOSR’s 60th anniversary celebration.

Schamiloglu was the eleventh guest speaker in this series, and his presentation, Directed Energy Microwave Research: Virtual Prototyping and the Paradigm Shift, was an informative and entertaining overview of high power microwave research.

Having been studied for more than 40 years, high power microwave research is a relatively new field, originally beginning with researchers in the United States and the former Soviet Union who dominated the effort. Today, dozens of countries are actively pursuing programs in developing such sources. Early developments in the field were motivated by researchers developing sources with ever-greater output power levels and longer pulse durations (greater energy).

But interestingly, the period from the 1970s to the mid-1990s, which was dominated by the pursuit for greater and greater power levels, ran headlong into the phenomenon of pulse shortening, which was recognized as a fundamental barrier to this approach. In effect, pulse shortening is an operational barrier which severely limits HPM output pulse length and thus the amount of energy radiated. It was this limit on radiated HPM energy that forced researchers to regroup and to pursue other avenues of approach. Or as Schamiloglu described it, “moving away from the ‘flamethrower’ mentality,” and realizing that HPM power alone might not be sufficient, and that the emphasis should be on the establishment of a higher repetition (cycle) rate for these sources, and to possibly tailor HPM waveforms to optimize their effects. To do this, the community would have to focus on developing broadband HPM amplifiers to generate a desirable waveform at low power, and then amplify that signal to a much higher power. In addition, to make HPM viable from a practical application standpoint, advances in compact pulsed power were necessary so these newer models could leave the laboratory and fit on mobile platforms.

Which brings us to why the Department of Defense and the Air Force would be interested in directed energy microwaves in the first place. Several very good reasons: speed of light, all-weather electronic attack of enemy systems; area coverage of multiple targets; surgical strike; minimal collateral damage: simplified pointing and tracking; and extended operational time with low operating costs.

These significant advantages led AFOSR to fund what can be described as a paradigm shift in the HPM community at the University of New Mexico in 1994. It was at this time that virtual prototyping – the use of sophisticated particle-in-cell codes – was recognized as a critical tool for HPM source researchers. PIC codes revolutionized the field. Developed by plasma physicists, these three dimensional finite-difference-time-domain fully electromagnetic field solvers incorporate relativistic dynamics. The result: virtual prototyping, which led to a concentration on effects-driven HPM source research, the pursuit of which is greatly enhanced by the innovative use of metamaterials in confining, controlling and radiating intense microwave pulses.

In his concluding remarks, Schamiloglu noted that AFOSR investment has been key to supporting the transition to virtual prototyping that has resulted in more efficient and cost effective HPM source design and that this investment has led the way to more compact sources of pulsed power to drive HPM sources, and that continued AFOSR investment is paving the way to effects-driven HPM source research, which will lead to novel amplifiers.

AFOSR continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force’s basic research program. As a vital component of the Air Force Research Laboratory, AFOSR’s mission is to discover, shape and champion basic science that profoundly impacts the future Air Force.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 15, 2014

News: Navy identifies pilot presumed dead in crash - A Navy fighter pilot presumed dead after two fighter jets crashed in the far western Pacific Ocean has been identified.   Business: Boeing eyes 737-700 solution for new JSTARS - Boeing is officially planning a variant of its 737-700 commercial jetliner as a competitor for the Air Force’s...
 
 

News Briefs September 15, 2014

Australia contributing planes for anti-IS campaign Australia is preparing to contribute 600 troops and up to 10 military aircraft to the increasingly aggressive campaign against the Islamic State extremists in Syria and Iraq, Prime Minister Tony Abbott said Sept. 14. Abbott said Australia was responding to a formal request from the United States for specific...
 
 
Courtesy graphic

Lockheed Martin conducts flight tests of aircraft laser turret for DARPA

AFRL photograph The Aero-adaptive Aero-optic Beam Control turret that Lockheed Martin is developing for the Defense Advanced Research Projects Agency and the Air Force Research Laboratory has completed initial flight testing. T...
 

 

Lockheed Martin advances live, virtual, constructive training in flight test

https://www.youtube.com/watch?feature=player_embedded&v=jvXmOW8L3mU Lockheed Martin successfully tested a new solution for integrated live, virtual and constructive training during a flight demonstration at the company’s Aeronautics facility in Fort Worth, Texas. During the flight test, a pilot flying in a live F-16 engaged in a synthetic training exercise with a pilot flying as wing...
 
 
Image courtesy of NASA/JPL-Caltech/Univ. of Arizona

NASA’s Mars Curiosity rover arrives at Martian mountain

NASA’s Mars Curiosity rover has reached the Red Planet’s Mount Sharp, a Mount-Rainier-size mountain at the center of the vast Gale Crater and the rover mission’s long-term prime destination. “Curiosity n...
 
 

Raytheon begins full rate production on TALON Laser Guided Rockets

Under a $117 million contract awarded to Raytheon, Raytheon Missile Systems has begun production of the TALON Laser Guided Rocket. In 2013, the Armed Forces General Headquarters of the United Arab Emirates awarded Tawazun a contract to procure the TALON Laser Guided Rocket. “Full rate production of the TALON LGR is a significant milestone for...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>