Tech

July 25, 2012

ATK to provide key components for DARPA Phoenix satellite repurposing program

ATK has been selected as a key participant to support the U.S. Defense Advanced Research Projects Agency Tactical Technologies Office Phoenix Technologies Program.

The Phoenix Program is developing technologies to cooperatively harvest and re-use valuable components from retired, nonworking satellites in geosynchronous orbit.

The planned repurposing of these satellite components such as antennas represents the potential to create new space resources at significantly less cost.

The DARPA Phoenix Program system integrator, the Naval Research Laboratory, has issued a solicitation announcing it intends to negotiate with ATK to modify an existing U.S.-built, U.S. government owned geostationary satellite bus for the Phoenix mission. NRL has identified ATK as the only responsive source for this service. The bus, originally developed by ATK, is designed to be capable of supporting, for a minimum of one year, robotic rendezvous and proximity operations, and a grapple-and-repair robotic technology demonstration mission. The bus is scheduled to be delivered by October 2014 to the NRL for Space Vehicle integration and test.

ATK has also been selected for a contract award in response to a Broad Agency Announcement from DARPA for the Phoenix Technologies Program for the primary robotics effort. ATK, in partnership with the University of Maryland’s Space Systems Laboratory, will develop robotic servicing tools and software to enable re-use of the antenna and other working components of a nonfunctional satellite. ATK’s hardware is comprised of a Satellite Capture Tool and a Aperture Grasp and Severing Tool. These tools provide applications for satellite grappling and control as well as salvage operations.

In addition, ViviSat, a satellite life extension service owned by ATK and U.S. Space LLC, continues its development and is synergistic with DARPA’s vision of sustainable satellite servicing. The goal of the Mission Extension Vehicle is to robotically dock with satellites not designed for on-orbit servicing, extending the mission of the client spacecraft by one to fifteen years. Combined with ATK’s new state of the art Robotic Rendezvous and Proximity Operations Lab, these services provide the tools to leverage DARPA-developed technologies and adapt new capabilities to specific commercial and military customers.

“ATK is proving itself as a market leader in the satellite servicing business,” said Tom Wilson, ATK Space Systems Division vice president and general manager. “Our existing expertise in spacecraft bus technology and robotic satellite servicing tools is a significant asset towards helping the DARPA Phoenix program achieve mission success. We have established a highly successful record of delivering servicing tools in support of the Space Shuttle, the Hubble Space Telescope Servicing Missions and the ongoing NASA Robotic Refueling Mission. Our ViviSat satellite life extension service and RPO Robotics Lab can also serve as a testbed for these tools in addition to the capabilities provided by our partners at the University of Maryland Space Systems Laboratory. We look forward to working with the DARPA and NRL to advance this state of the art technology in robotic servicing via the Phoenix program.”

ATK has flown more than 140 tools in space over the past two decades that have enabled human and robotic servicing of spacecraft and continues to maintain its position at the forefront of satellite servicing tools and technology development. The Phase 1 of the BAA primary robotics contract period is 14 months with a value of $1.7 million.

ATK is an aerospace, defense and commercial products company with operations in 21 states, Puerto Rico and internationally.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 2, 2014

News: Debris yields clues that pilot never ejected - When investigators were finally able to safely enter the crash site of an F-15C “Eagle” fighter jet on the afternoon of Aug. 27, they made a grim discovery that concluded more than 30 hours of searching – the pilot never managed to eject from the aircraft.  ...
 
 

News Briefs September 2, 2014

Pentagon: Iraq operations cost $560 million so far U.S. military operations in Iraq, including airstrikes and surveillance flights, have cost about $560 million since mid-June, the Pentagon said Aug. 29. Rear Adm. John Kirby, the Pentagon press secretary, said the average daily cost has been $7.5 million. He said it began at a much lower...
 
 

Unmanned aircraft partnership reaches major milestone

A team of research students and staff from Warsaw University of Technology have successfully demonstrated the first phase of flight test and integration of unmanned aircraft platforms with an autonomous mission control system. The demonstration marks a significant milestone in a partnership between the university and Lockheed Martin that began earlier this year. This is...
 

 

Raytheon delivers first Block 2 Rolling Airframe Missiles to US Navy

Raytheon delivered the first Block 2 variant of its Rolling Airframe Missile system to the U.S. Navy as part of the company’s 2012 Low Rate Initial Production contract. RAM Block 2 is a significant performance upgrade featuring enhanced kinematics, an evolved radio frequency receiver, and an improved control system. “As today’s threats continue to evolve,...
 
 
Courtesy photograph

Two Vietnam War Soldiers, one from Civil War to receive Medal of Honor

U.S. Army graphic Retired Command Sgt. Maj. Bennie G. Adkins and former Spc. 4 Donald P. Sloat will receive the Medal of Honor for actions in Vietnam. The White House announced Aug. 26 that Retired Command Sgt. Maj. Bennie G. A...
 
 

Sparks fly as NASA pushes limits of 3-D printing technology

NASA has successfully tested the most complex rocket engine parts ever designed by the agency and printed with additive manufacturing, or 3-D printing, on a test stand at NASA’s Marshall Space Flight Center in Huntsville, Ala. NASA engineers pushed the limits of technology by designing a rocket engine injector – a highly complex part that...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>